File size: 149,181 Bytes
6501536 bae9c8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 |
---
language:
- en
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- es
- et
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hu
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- th
- tr
- uk
- ur
- vi
- zh
- hr
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:62698210
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A man is ouside near the beach.
- The bed is dirty.
- The man is on the moon.
- source_sentence: Ship Simulator (video game)
sentences:
- ಯಂತ್ರ ಕಲಿಕೆ
- Ship Simulator
- جان بابتيست لويس بيير
- source_sentence: And so was the title of his book on the Israeli massacre of Gaza
in 2008-2009.
sentences:
- Antony Lowenstein ist ein bekannter Blogger über den Nahen Osten.
- Y ese fue el título de su libro sobre la masacre israelí de Gaza entre 2008 y
2009.
- 'C''était au temps où vous ne pouviez pas avoir un film de Nollywood qui n''incluait
pas un ou une combinaison des aspects suivants: fraude, gris-gris/sorcellerie,
vol à main armée, inceste, adultère, cannibalisme et, naturellement notre sujet
favori, la corruption.'
- source_sentence: In fact, it contributes more than 12 percent to Thailand’s GDP.
sentences:
- Einige Provider folgten der Anordnung, aber „Fitna“ konnte noch über andere Anbieter
angesehen werden.
- En fait, il représente plus de 12% du produit national brut thaïlandais.
- '"Aber von heute an...heute ist der Anfang eines neuen Lebens für mich."'
- source_sentence: It is known for its dry red chili powder .
sentences:
- These monsters will move in large groups .
- It is popular for dry red chili powder .
- In a statistical overview derived from writings by and about William George Aston
, OCLC/WorldCat includes roughly 90 + works in 200 + publications in 4 languages
and 3,000 + library holdings .
datasets:
- sentence-transformers/parallel-sentences-wikititles
- sentence-transformers/parallel-sentences-tatoeba
- sentence-transformers/parallel-sentences-talks
- sentence-transformers/parallel-sentences-europarl
- sentence-transformers/parallel-sentences-global-voices
- sentence-transformers/parallel-sentences-muse
- sentence-transformers/parallel-sentences-wikimatrix
- sentence-transformers/parallel-sentences-opensubtitles
- sentence-transformers/stackexchange-duplicates
- sentence-transformers/quora-duplicates
- sentence-transformers/wikianswers-duplicates
- sentence-transformers/all-nli
- sentence-transformers/simple-wiki
- sentence-transformers/altlex
- sentence-transformers/flickr30k-captions
- sentence-transformers/coco-captions
- sentence-transformers/nli-for-simcse
- jinaai/negation-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
co2_eq_emissions:
emissions: 196.7083299812303
energy_consumed: 0.5060646201491896
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 3.163
hardware_used: 1 x NVIDIA GeForce RTX 3090
---
# Static Embeddings with BERT Multilingual uncased tokenizer finetuned on various datasets
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [wikititles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikititles), [tatoeba](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-tatoeba), [talks](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-talks), [europarl](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-europarl), [global_voices](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-global-voices), [muse](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-muse), [wikimatrix](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikimatrix), [opensubtitles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-opensubtitles), [stackexchange](https://huggingface.co./datasets/sentence-transformers/stackexchange-duplicates), [quora](https://huggingface.co./datasets/sentence-transformers/quora-duplicates), [wikianswers_duplicates](https://huggingface.co./datasets/sentence-transformers/wikianswers-duplicates), [all_nli](https://huggingface.co./datasets/sentence-transformers/all-nli), [simple_wiki](https://huggingface.co./datasets/sentence-transformers/simple-wiki), [altlex](https://huggingface.co./datasets/sentence-transformers/altlex), [flickr30k_captions](https://huggingface.co./datasets/sentence-transformers/flickr30k-captions), [coco_captions](https://huggingface.co./datasets/sentence-transformers/coco-captions), [nli_for_simcse](https://huggingface.co./datasets/sentence-transformers/nli-for-simcse) and [negation](https://huggingface.co./datasets/jinaai/negation-dataset) datasets. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, paraphrase mining, text classification, clustering, and more.
Read our [Static Embeddings blogpost](https://huggingface.co./blog/static-embeddings) to learn more about this model and how it was trained.
* **0 Active Parameters:** This model does not use any active parameters, instead consisting exclusively of averaging pre-computed token embeddings.
* **100x to 400x faster:** On CPU, this model is 100x to 400x faster than common options like [multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small). On GPU, it's 10x to 25x faster.
* **Matryoshka:** This model was trained with a [Matryoshka loss](https://huggingface.co./blog/matryoshka), allowing you to truncate the embeddings for faster retrieval at minimal performance costs.
* **Evaluations:** See [Evaluations](#evaluation) for details on performance on NanoBEIR, embedding speed, and Matryoshka dimensionality truncation.
* **Training Script:** See [train.py](train.py) for the training script used to train this model from scratch.
See [`static-retrieval-mrl-en-v1`](https://huggingface.co./sentence-transformers/static-retrieval-mrl-en-v1) for an English static embedding model that has been finetuned specifically for retrieval tasks.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co./unknown) -->
- **Maximum Sequence Length:** inf tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [wikititles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikititles)
- [tatoeba](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-tatoeba)
- [talks](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-talks)
- [europarl](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-europarl)
- [global_voices](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-global-voices)
- [muse](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-muse)
- [wikimatrix](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikimatrix)
- [opensubtitles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-opensubtitles)
- [stackexchange](https://huggingface.co./datasets/sentence-transformers/stackexchange-duplicates)
- [quora](https://huggingface.co./datasets/sentence-transformers/quora-duplicates)
- [wikianswers_duplicates](https://huggingface.co./datasets/sentence-transformers/wikianswers-duplicates)
- [all_nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- [simple_wiki](https://huggingface.co./datasets/sentence-transformers/simple-wiki)
- [altlex](https://huggingface.co./datasets/sentence-transformers/altlex)
- [flickr30k_captions](https://huggingface.co./datasets/sentence-transformers/flickr30k-captions)
- [coco_captions](https://huggingface.co./datasets/sentence-transformers/coco-captions)
- [nli_for_simcse](https://huggingface.co./datasets/sentence-transformers/nli-for-simcse)
- [negation](https://huggingface.co./datasets/jinaai/negation-dataset)
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh, hr
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(105879, 1024, mode='mean')
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/static-similarity-mrl-multilingual-v1")
# Run inference
sentences = [
'It is known for its dry red chili powder .',
'It is popular for dry red chili powder .',
'These monsters will move in large groups .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
This model was trained with Matryoshka loss, allowing this model to be used with lower dimensionalities with minimal performance loss.
Notably, a lower dimensionality allows for much faster downstream tasks, such as clustering or classification. You can specify a lower dimensionality with the `truncate_dim` argument when initializing the Sentence Transformer model:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/static-similarity-mrl-multilingual-v1", truncate_dim=256)
embeddings = model.encode([
"I used to hate him.",
"Раньше я ненавидел его."
])
print(embeddings.shape)
# => (2, 256)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
We've evaluated the model on 5 languages which have a lot of benchmarks across various tasks on [MTEB](https://huggingface.co./spaces/mteb/leaderboard).
We want to reiterate that this model is not intended for retrieval use cases. Instead, we evaluate on Semantic Textual Similarity (STS), Classification, and Pair Classification. We compare against the excellent and small [multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small) model.
![](img/similarity_mteb_eval.png)
Across all measured languages, [static-similarity-mrl-multilingual-v1](https://huggingface.co./sentence-transformers/static-similarity-mrl-multilingual-v1) reaches an average **92.3%** for STS, **95.52%** for Pair Classification, and **86.52%** for Classification relative to [multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small).
![](img/similarity_speed.png)
To make up for this performance reduction, [static-similarity-mrl-multilingual-v1](https://huggingface.co./sentence-transformers/static-similarity-mrl-multilingual-v1) is approximately ~125x faster on CPU and ~10x faster on GPU devices than [multilingual-e5-small](https://huggingface.co./intfloat/multilingual-e5-small). Due to the super-linear nature of attention models, versus the linear nature of static embedding models, the speedup will only grow larger as the number of tokens to encode increases.
#### Matryoshka Evaluation
Lastly, we experimented with the impacts on English STS on MTEB performance when we did Matryoshka-style dimensionality reduction by truncating the output embeddings to a lower dimensionality.
![English STS MTEB performance vs Matryoshka dimensionality reduction](img/similarity_matryoshka.png)
As you can see, you can easily reduce the dimensionality by 2x or 4x with minor (0.15% or 0.56%) performance hits. If the speed of your downstream task or your storage costs are a bottleneck, this should allow you to alleviate some of those concerns.
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
<details><summary>wikititles</summary>
* Dataset: [wikititles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikititles) at [d92a4d2](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikititles/tree/d92a4d28a082c3c93563feb92a77de6074bdeb52)
* Size: 14,700,458 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 characters</li><li>mean: 18.33 characters</li><li>max: 84 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 17.19 characters</li><li>max: 109 characters</li></ul> |
* Samples:
| english | non_english |
|:------------------------|:---------------------------|
| <code>Le Vintrou</code> | <code>Ле-Вентру</code> |
| <code>Greening</code> | <code>Begrünung</code> |
| <code>Warrap</code> | <code>واراب (توضيح)</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>tatoeba</summary>
* Dataset: [tatoeba](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-tatoeba) at [cec1343](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-tatoeba/tree/cec1343ab5a7a8befe99af4a2d0ca847b6c84743)
* Size: 4,138,956 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 characters</li><li>mean: 31.59 characters</li><li>max: 196 characters</li></ul> | <ul><li>min: 6 characters</li><li>mean: 30.95 characters</li><li>max: 161 characters</li></ul> |
* Samples:
| english | non_english |
|:-------------------------------------------------------|:-------------------------------------|
| <code>I used to hate him.</code> | <code>Раньше я ненавидел его.</code> |
| <code>It is nothing less than an insult to her.</code> | <code>それはまさに彼女に対する侮辱だ。</code> |
| <code>I've apologized, so lay off, OK?</code> | <code>謝ったんだから、さっきのはチャラにしてよ。</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>talks</summary>
* Dataset: [talks](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
* Size: 9,750,031 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 characters</li><li>mean: 94.41 characters</li><li>max: 493 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 82.49 characters</li><li>max: 452 characters</li></ul> |
* Samples:
| english | non_english |
|:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| <code>(Laughter) EC: But beatbox started here in New York.</code> | <code>(Skratt) EC: Fast beatbox började här i New York.</code> |
| <code>I did not have enough money to buy food, and so to forget my hunger, I started singing."</code> | <code>食べ物を買うお金もなかった だから 空腹を忘れるために 歌を歌い始めたの」</code> |
| <code>That is another 25 million barrels a day.</code> | <code>那时还要增加两千五百万桶的原油。</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>europarl</summary>
* Dataset: [europarl](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-europarl) at [11007ec](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-europarl/tree/11007ecf9c790178a49a4cbd5cfea451a170f2dc)
* Size: 4,990,000 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 0 characters</li><li>mean: 147.77 characters</li><li>max: 668 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 153.13 characters</li><li>max: 971 characters</li></ul> |
* Samples:
| english | non_english |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>(SK) I would like to stress three key points in relation to this issue.</code> | <code>(SK) Chtěla bych zdůraznit tři klíčové body, které jsou s tímto tématem spojeny.</code> |
| <code>Women have a higher recorded rate of unemployment, especially long term unemployment.</code> | <code>Blandt kvinder registreres større arbejdsløshed, især blandt langtidsarbejdsløse.</code> |
| <code>You will recall that we have occasionally had disagreements over how to interpret Rule 166 of our Rules of Procedure and that certain Members thought that the Presidency was not applying it properly, since it was not giving the floor for points of order that did not refer to the issue that was being debated at that moment.</code> | <code>De husker nok, at vi til tider har været uenige om fortolkningen af artikel 166 i vores forretningsorden, og at nogle af medlemmerne mente, at formanden ikke anvendte den korrekt, eftersom han ikke gav ordet til indlæg til forretningsordenen, når det ikke drejede sig om det spørgsmål, der blev drøftet på det pågældende tidspunkt.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>global_voices</summary>
* Dataset: [global_voices](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-global-voices) at [4cc20ad](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-global-voices/tree/4cc20add371f246bb1559b543f8b0dea178a1803)
* Size: 1,099,099 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 characters</li><li>mean: 115.13 characters</li><li>max: 740 characters</li></ul> | <ul><li>min: 3 characters</li><li>mean: 119.89 characters</li><li>max: 801 characters</li></ul> |
* Samples:
| english | non_english |
|:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|
| <code>Generation 9/11: Cristina Balli (USA) from British Council USA on Vimeo.</code> | <code>Генерација 9/11: Кристина Бали (САД) од Британскиот совет САД на Вимео.</code> |
| <code>Jamaica: Mapping the state of emergency · Global Voices</code> | <code>Jamaica: Mapeando el estado de emergencia</code> |
| <code>It takes more than courage or bravery to do such a... http://fb.me/12T47y0Ml</code> | <code>Θέλει κάτι παραπάνω από κουράγιο ή ανδρεία για να κάνεις κάτι τέτοιο... http://fb.me/12T47y0Ml</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>muse</summary>
* Dataset: [muse](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-muse) at [238c077](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-muse/tree/238c077ac66070748aaf2ab1e45185b0145b7291)
* Size: 1,368,274 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:---------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 characters</li><li>mean: 7.38 characters</li><li>max: 16 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 7.33 characters</li><li>max: 18 characters</li></ul> |
* Samples:
| english | non_english |
|:---------------------|:--------------------|
| <code>metro</code> | <code>metrou</code> |
| <code>suggest</code> | <code>제안</code> |
| <code>nnw</code> | <code>nno</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>wikimatrix</summary>
* Dataset: [wikimatrix](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikimatrix) at [74a4cb1](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikimatrix/tree/74a4cb15422cdd0c3aacc93593b6cb96a9b9b3a9)
* Size: 9,688,498 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 16 characters</li><li>mean: 124.31 characters</li><li>max: 418 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 129.99 characters</li><li>max: 485 characters</li></ul> |
* Samples:
| english | non_english |
|:-------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
| <code>3) A set of wikis to support collaboration activities and disseminate information about good practices.</code> | <code>3) Un conjunt de wikis per donar suport a les activitats de col·laboració i difusió d'informació sobre bones pràctiques.</code> |
| <code>Daily cruiseferry services operate to Copenhagen and Frederikshavn in Denmark, and to Kiel in Germany.</code> | <code>Dịch vụ phà du lịch hàng ngày vận hành tới Copenhagen và Frederikshavn tại Đan Mạch, và tới Kiel tại Đức.</code> |
| <code>In late April 1943, Philipp was ordered to report to Hitler's headquarters, where he stayed for most of the next four months.</code> | <code>Sent i april 1943 fick Philipp ordern att rapportera till Hitlers högkvarter, där han stannade i fyra månader.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>opensubtitles</summary>
* Dataset: [opensubtitles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-opensubtitles) at [d86a387](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-opensubtitles/tree/d86a387587ab6f2fd9ec7453b2765cec68111c87)
* Size: 4,990,000 training samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 0 characters</li><li>mean: 34.43 characters</li><li>max: 220 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 26.99 characters</li><li>max: 118 characters</li></ul> |
* Samples:
| english | non_english |
|:------------------------------------------------------------------------|:---------------------------------------------------------------|
| <code>Would you send a tomato juice, black coffee and a masseur?</code> | <code>هل لك أن ترسل لي عصير طماطم قهوة سوداء.. والمدلك!</code> |
| <code>To hear the angels sing</code> | <code>لكى تسمع غناء الملائكه</code> |
| <code>Brace yourself.</code> | <code>" تمالك نفسك " بريكر</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>stackexchange</summary>
* Dataset: [stackexchange](https://huggingface.co./datasets/sentence-transformers/stackexchange-duplicates) at [1c9657a](https://huggingface.co./datasets/sentence-transformers/stackexchange-duplicates/tree/1c9657aec12d9e101667bb9593efcc623c4a68ff)
* Size: 250,519 training samples
* Columns: <code>post1</code> and <code>post2</code>
* Approximate statistics based on the first 1000 samples:
| | post1 | post2 |
|:--------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 77 characters</li><li>mean: 669.56 characters</li><li>max: 3982 characters</li></ul> | <ul><li>min: 81 characters</li><li>mean: 641.44 characters</li><li>max: 4053 characters</li></ul> |
* Samples:
| post1 | post2 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>New user question about passwords Just got a refurbished computer with Ubuntu as the OS. Have never even heard of the OS and now I'm trying to learn. When I boot the system, it starts up great. But, if I try to navigate around, it requires a password. Is there a trick to finding the initial password? Please advise.</code> | <code>How do I reset a lost administrative password? I'm working on a Ubuntu system, and my client has completely forgotten his administrative password. He doesn't even remember entering one; however it is there. I've tried the suggestions on the website, and I have been unsuccessful in deleting the password so that I can download applets required for running some files. Is there a solution?</code> |
| <code>Reorder a list of string randomly but constant in a period of time I need to reorder a list in a random way but I want to have the same result on a short period of time ... So I have: var list = new String[] { "Angie", "David", "Emily", "James" } var shuffled = list.OrderBy(v => "4a78926c")).ToList(); But I always get the same order ... I could use Guid.NewGuid() but then I would have a different result in a short period of time. How can I do this?</code> | <code>Randomize a List What is the best way to randomize the order of a generic list in C#? I've got a finite set of 75 numbers in a list I would like to assign a random order to, in order to draw them for a lottery type application.</code> |
| <code>Made a mistake on check need help to fix I wrote a check and put the amount in the pay to order spot. Can I just mark it out, put the name in the spot and finish writing the check?</code> | <code>How to correct a mistake made when writing a check? I think I know the answer to this, but I'm not sure, and it's a good question, so I'll ask: What is the accepted/proper way to correct a mistake made on a check? For instance, I imagine that in any given January, some people accidentally date a check in the previous year. Is there a way to correct such a mistake, or must a check be voided (and wasted)? Pointers to definitive information (U.S., Canada, and elsewhere) are helpful.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>quora</summary>
* Dataset: [quora](https://huggingface.co./datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co./datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 101,762 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 16 characters</li><li>mean: 53.47 characters</li><li>max: 249 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 52.63 characters</li><li>max: 237 characters</li></ul> | <ul><li>min: 14 characters</li><li>mean: 54.67 characters</li><li>max: 292 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------|:-------------------------------------------------|:----------------------------------------------------|
| <code>What food should I try in Brazil?</code> | <code>Which foods should I try in Brazil?</code> | <code>What meat should one eat in Argentina?</code> |
| <code>What is the best way to get a threesome?</code> | <code>How does one find a threesome?</code> | <code>How is the experience of a threesome?</code> |
| <code>Whether I do CA or MBA? Which is better?</code> | <code>Which is better CA or MBA?</code> | <code>Which is better CA or IT?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>wikianswers_duplicates</summary>
* Dataset: [wikianswers_duplicates](https://huggingface.co./datasets/sentence-transformers/wikianswers-duplicates) at [9af6367](https://huggingface.co./datasets/sentence-transformers/wikianswers-duplicates/tree/9af6367d1ad084daf8a9de9c21bc33fcdc7770d0)
* Size: 9,990,000 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 14 characters</li><li>mean: 47.39 characters</li><li>max: 151 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 47.58 characters</li><li>max: 154 characters</li></ul> |
* Samples:
| anchor | positive |
|:----------------------------------------------------------------------|:-------------------------------------------------------------------------|
| <code>Did Democritus belive matter was continess?</code> | <code>Why did democritus call the smallest pice of matter atomos?</code> |
| <code>Tell you about the most ever done to satisfy a customer?</code> | <code>How do you satisfy your client or customer?</code> |
| <code>How is a chemical element different from a compound?</code> | <code>How is a chemical element different to a compound?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>all_nli</summary>
* Dataset: [all_nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 34.88 characters</li><li>max: 193 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 46.49 characters</li><li>max: 181 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 50.47 characters</li><li>max: 204 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>simple_wiki</summary>
* Dataset: [simple_wiki](https://huggingface.co./datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co./datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
* Size: 102,225 training samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
| | text | simplified |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 18 characters</li><li>mean: 149.3 characters</li><li>max: 573 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 123.58 characters</li><li>max: 576 characters</li></ul> |
* Samples:
| text | simplified |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The next morning , it had a small CDO and well-defined bands , and the system , either a weak tropical storm or a strong tropical depression , likely reached its peak .</code> | <code>The next morning , it had a small amounts of convection near the center and well-defined bands , and the system , either a weak tropical storm or a strong tropical depression , likely reached its peak .</code> |
| <code>The region of measurable parameter space that corresponds to a regime is very often loosely defined . Examples include `` the superfluid regime '' , `` the steady state regime '' or `` the femtosecond regime '' .</code> | <code>This is common if a regime is threatened by another regime .</code> |
| <code>The Lamborghini Diablo is a high-performance mid-engined sports car that was built by Italian automaker Lamborghini between 1990 and 2001 .</code> | <code>The Lamborghini Diablo is a sport car that was built by Lamborghini from 1990 to 2001 .</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>altlex</summary>
* Dataset: [altlex](https://huggingface.co./datasets/sentence-transformers/altlex) at [97eb209](https://huggingface.co./datasets/sentence-transformers/altlex/tree/97eb20963455c361d5a81c107c3596cff9e0cd82)
* Size: 112,696 training samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
| | text | simplified |
|:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 13 characters</li><li>mean: 131.03 characters</li><li>max: 492 characters</li></ul> | <ul><li>min: 13 characters</li><li>mean: 112.41 characters</li><li>max: 492 characters</li></ul> |
* Samples:
| text | simplified |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Reinforcement and punishment are the core tools of operant conditioning .</code> | <code>Principles of operant conditioning :</code> |
| <code>The Japanese Ministry of Health , Labour and Welfare defines `` hikikomori '' as people who refuse to leave their house and , thus , isolate themselves from society in their homes for a period exceeding six months .</code> | <code>The Japanese Ministry of Health , Labour and Welfare defines hikikomori as people who refuse to leave their house for over six months .</code> |
| <code>It has six rows of black spines and has a pair of long , clubbed spines on the head .</code> | <code>It has a pair of long , clubbed spines on the head .</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
#### flickr30k_captions
* Dataset: [flickr30k_captions](https://huggingface.co./datasets/sentence-transformers/flickr30k-captions) at [0ef0ce3](https://huggingface.co./datasets/sentence-transformers/flickr30k-captions/tree/0ef0ce31492fd8dc161ed483a40d3c4894f9a8c1)
* Size: 158,881 training samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
| | caption1 | caption2 |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 20 characters</li><li>mean: 63.19 characters</li><li>max: 318 characters</li></ul> | <ul><li>min: 13 characters</li><li>mean: 63.65 characters</li><li>max: 205 characters</li></ul> |
* Samples:
| caption1 | caption2 |
|:--------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| <code>Four women pose for a photograph with a man in a bright yellow suit.</code> | <code>A group of friends get their photo taken with a man in a green suit.</code> |
| <code>A many dressed in army gear walks on the crash walking a brown dog.</code> | <code>A man with army fatigues is walking his dog.</code> |
| <code>Four people are sitting around a kitchen counter while one is drinking from a glass.</code> | <code>A group of people sit around a breakfast bar.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>coco_captions</summary>
* Dataset: [coco_captions](https://huggingface.co./datasets/sentence-transformers/coco-captions) at [bd26018](https://huggingface.co./datasets/sentence-transformers/coco-captions/tree/bd2601822b9af9a41656d678ffbd5c80d81e276a)
* Size: 414,010 training samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
| | caption1 | caption2 |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 30 characters</li><li>mean: 52.57 characters</li><li>max: 151 characters</li></ul> | <ul><li>min: 29 characters</li><li>mean: 52.71 characters</li><li>max: 186 characters</li></ul> |
* Samples:
| caption1 | caption2 |
|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| <code>THERE ARE FRIENDS ON THE BEACH POSING </code> | <code>A group of people standing together on the beach while holding a woman.</code> |
| <code>a lovely white bathroom with white shower curtain.</code> | <code>A white toilet sitting in a bathroom next to a sink.</code> |
| <code>Two drinking glass on a counter and a man holding a knife looking at something in front of him.</code> | <code>A restaurant employee standing behind two cups on a counter.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>nli_for_simcse</summary>
* Dataset: [nli_for_simcse](https://huggingface.co./datasets/sentence-transformers/nli-for-simcse) at [926cae4](https://huggingface.co./datasets/sentence-transformers/nli-for-simcse/tree/926cae4af15a99b5cc2b053212bb52a4b377c418)
* Size: 274,951 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 11 characters</li><li>mean: 87.69 characters</li><li>max: 483 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 43.85 characters</li><li>max: 244 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 43.87 characters</li><li>max: 172 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------|:-----------------------------------------------------------|
| <code>A white horse and a rider wearing a ale blue shirt, white pants, and a black helmet are jumping a hurdle.</code> | <code>An equestrian is having a horse jump a hurdle.</code> | <code>A competition is taking place in a kitchen.</code> |
| <code>A group of people in a dome like building.</code> | <code>A gathering inside a building.</code> | <code>Cats are having a party.</code> |
| <code>Home to thousands of sheep and a few scattered farming families, the area is characterized by the stark beauty of bare peaks, rugged fells, and the most remote lakes, combined with challenging, narrow roads.</code> | <code>There are no wide and easy roads going through the area.</code> | <code>There are more humans than sheep in the area.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>negation</summary>
* Dataset: [negation](https://huggingface.co./datasets/jinaai/negation-dataset) at [cd02256](https://huggingface.co./datasets/jinaai/negation-dataset/tree/cd02256426cc566d176285a987e5436f1cd01382)
* Size: 10,000 training samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 characters</li><li>mean: 65.84 characters</li><li>max: 275 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 34.06 characters</li><li>max: 167 characters</li></ul> | <ul><li>min: 9 characters</li><li>mean: 37.26 characters</li><li>max: 166 characters</li></ul> |
* Samples:
| anchor | entailment | negative |
|:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:----------------------------------------------------------------------|
| <code>A boy with his hands above his head stands on a cement pillar above the cobblestones.</code> | <code>A boy is standing on a pillar over the cobblestones.</code> | <code>A boy is not standing on a pillar over the cobblestones.</code> |
| <code>The man works hard in his home office.</code> | <code>home based worker works harder</code> | <code>home based worker does not work harder</code> |
| <code>Man in black shirt plays silver electric guitar.</code> | <code>A man plays a silver electric guitar.</code> | <code>A man does not play a silver electric guitar.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
### Evaluation Datasets
<details><summary>wikititles</summary>
* Dataset: [wikititles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikititles) at [d92a4d2](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikititles/tree/d92a4d28a082c3c93563feb92a77de6074bdeb52)
* Size: 14,700,458 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 characters</li><li>mean: 18.33 characters</li><li>max: 77 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 17.3 characters</li><li>max: 83 characters</li></ul> |
* Samples:
| english | non_english |
|:-----------------------------------------------------------------|:-------------------------------------|
| <code>Bjørvika</code> | <code>比約維卡</code> |
| <code>Old Mystic, Connecticut</code> | <code>Олд Мистик (Конектикат)</code> |
| <code>Cystic fibrosis transmembrane conductance regulator</code> | <code>CFTR</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>tatoeba</summary>
* Dataset: [tatoeba](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-tatoeba) at [cec1343](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-tatoeba/tree/cec1343ab5a7a8befe99af4a2d0ca847b6c84743)
* Size: 4,138,956 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 characters</li><li>mean: 31.83 characters</li><li>max: 235 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 31.7 characters</li><li>max: 189 characters</li></ul> |
* Samples:
| english | non_english |
|:-----------------------------------------------------|:-----------------------------------------------------|
| <code>You are not consistent in your actions.</code> | <code>Je bent niet consequent in je handelen.</code> |
| <code>Neither of them seemed old.</code> | <code>Ninguno de ellos lucía viejo.</code> |
| <code>Stand up, please.</code> | <code>Устаните, молим Вас.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>talks</summary>
* Dataset: [talks](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
* Size: 9,750,031 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 characters</li><li>mean: 94.78 characters</li><li>max: 634 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 84.61 characters</li><li>max: 596 characters</li></ul> |
* Samples:
| english | non_english |
|:------------------------------------------------------------------|:-----------------------------------------------------------------------|
| <code>I'm earthed in my essence, and my self is suspended.</code> | <code>Je suis ancrée, et mon moi est temporairement inexistant.</code> |
| <code>It's not back on your shoulder.</code> | <code>Dar nu e înapoi pe umăr.</code> |
| <code>They're usually students who've never seen a desert.</code> | <code>たいていの学生は砂漠を見たこともありません</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>europarl</summary>
* Dataset: [europarl](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-europarl) at [11007ec](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-europarl/tree/11007ecf9c790178a49a4cbd5cfea451a170f2dc)
* Size: 10,000 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 0 characters</li><li>mean: 148.52 characters</li><li>max: 1215 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 154.44 characters</li><li>max: 1316 characters</li></ul> |
* Samples:
| english | non_english |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Mr Schmidt, Mr Trichet, I absolutely cannot go along with these proposals.</code> | <code>Pane Schmidte, pane Trichete, s těmito návrhy nemohu vůbec souhlasit.</code> |
| <code>The Council and Parliament recently adopted the regulation on the Single European Sky, one of the provisions of which was Community membership of Eurocontrol, so that Parliament has already indirectly expressed its views on this matter.</code> | <code>Der Rat und das Parlament haben kürzlich die Verordnung über die Schaffung eines einheitlichen europäischen Luftraums verabschiedet, in der unter anderem die Mitgliedschaft der Gemeinschaft bei Eurocontrol festgelegt ist, so dass das Parlament seine Auffassungen hierzu indirekt bereits dargelegt hat.</code> |
| <code>It was held over from the January part-session until this part-session.</code> | <code>Ihre Behandlung wurde von der Januar-Sitzung auf die jetzige vertagt.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>global_voices</summary>
* Dataset: [global_voices](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-global-voices) at [4cc20ad](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-global-voices/tree/4cc20add371f246bb1559b543f8b0dea178a1803)
* Size: 1,099,099 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 characters</li><li>mean: 115.61 characters</li><li>max: 629 characters</li></ul> | <ul><li>min: 3 characters</li><li>mean: 121.61 characters</li><li>max: 664 characters</li></ul> |
* Samples:
| english | non_english |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Haiti: Security vs. Relief? · Global Voices</code> | <code>Haïti : Zones rouges, zones vertes - sécurité contre aide humanitaire ?</code> |
| <code>In order to prevent weapon smuggling through tunnels, his forces would have fought and killed Palestinians over a sustained period of time.</code> | <code>Con el fin de impedir el contrabando de armas a través de túneles, sus fuerzas habrían combatido y muerto palestinos durante un largo período de tiempo.</code> |
| <code>Tombstone of Vitalis, an ancient Roman cavalry officer, displayed in front of the Skopje City Museum.</code> | <code>Lápida de Vitalis, un antiguo oficial romano de caballería, exhibida frente al Museo de la Ciudad de Skopje.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>muse</summary>
* Dataset: [muse](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-muse) at [238c077](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-muse/tree/238c077ac66070748aaf2ab1e45185b0145b7291)
* Size: 1,368,274 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 characters</li><li>mean: 7.5 characters</li><li>max: 17 characters</li></ul> | <ul><li>min: 1 characters</li><li>mean: 7.39 characters</li><li>max: 16 characters</li></ul> |
* Samples:
| english | non_english |
|:-------------------------|:-------------------------|
| <code>generalised</code> | <code>γενικευμένη</code> |
| <code>language</code> | <code>jazyku</code> |
| <code>finalised</code> | <code>финализиран</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>wikimatrix</summary>
* Dataset: [wikimatrix](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikimatrix) at [74a4cb1](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-wikimatrix/tree/74a4cb15422cdd0c3aacc93593b6cb96a9b9b3a9)
* Size: 9,688,498 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 characters</li><li>mean: 122.6 characters</li><li>max: 424 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 128.09 characters</li><li>max: 579 characters</li></ul> |
* Samples:
| english | non_english |
|:-------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| <code>Along with the adjacent waters, it was declared a nature reserve in 2002.</code> | <code>Juntament amb les aigües adjacents, va ser declarada reserva natural el 2002.</code> |
| <code>Like her husband, Charlotte was a patron of astronomy.</code> | <code>Stejně jako manžel byla Šarlota patronkou astronomie.</code> |
| <code>Some of the music consists of simple sounds, such as a wind effect heard over the poem "Soon Alaska".</code> | <code>Sommige muziekstukken bevatten eenvoudige geluiden, zoals het geluid van de wind tijdens het gedicht "Soon Alaska".</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>opensubtitles</summary>
* Dataset: [opensubtitles](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-opensubtitles) at [d86a387](https://huggingface.co./datasets/sentence-transformers/parallel-sentences-opensubtitles/tree/d86a387587ab6f2fd9ec7453b2765cec68111c87)
* Size: 10,000 evaluation samples
* Columns: <code>english</code> and <code>non_english</code>
* Approximate statistics based on the first 1000 samples:
| | english | non_english |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 0 characters</li><li>mean: 35.01 characters</li><li>max: 200 characters</li></ul> | <ul><li>min: 0 characters</li><li>mean: 27.79 characters</li><li>max: 143 characters</li></ul> |
* Samples:
| english | non_english |
|:-------------------------------------------|:---------------------------------------|
| <code>- I don't need my medicine.</code> | <code>-لا أحتاج لدوائي</code> |
| <code>The Sovereign... Ah.</code> | <code>(الطاغية)!</code> |
| <code>The other two from your ship.</code> | <code>الإثنان الأخران من سفينتك</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>stackexchange</summary>
* Dataset: [stackexchange](https://huggingface.co./datasets/sentence-transformers/stackexchange-duplicates) at [1c9657a](https://huggingface.co./datasets/sentence-transformers/stackexchange-duplicates/tree/1c9657aec12d9e101667bb9593efcc623c4a68ff)
* Size: 250,519 evaluation samples
* Columns: <code>post1</code> and <code>post2</code>
* Approximate statistics based on the first 1000 samples:
| | post1 | post2 |
|:--------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 64 characters</li><li>mean: 669.92 characters</li><li>max: 4103 characters</li></ul> | <ul><li>min: 62 characters</li><li>mean: 644.68 characters</li><li>max: 4121 characters</li></ul> |
* Samples:
| post1 | post2 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Find the particular solution for this linear ODE $y' '-2y'+5y=e^x \cos2x$. Find the particular solution for this linear ODE :$y' '-2y'+5y=e^x \cos2x$. How can I use Undetermined coefficients method ?</code> | <code>Particular solution of $y''-4y'+5y = 4e^{2x} (\sin x)$ How do I find the particular solution of this second order inhomogenous differential equation? (Using undetermined coefficients). $y''-4y'+5y = 4e^{2x} (\sin x)$ I can find the generel homogenous solutions but I need help for the particular.</code> |
| <code>Unbounded sequence has an divergent subsequence Show that if $(x_n)$ is unbounded, then there exists a subsequence $(x_{n_k})$ such that $\lim 1/(x_{n_k}) =0.$ I was thinking that $(x_n)$ is a subsequence of itself. WLOG, suppose $(x_n)$ does not have an upper bound. By Algebraic Limit Theorem, $\lim 1/(x_{n_k}) =0.$ Is there any flaws in my proof?</code> | <code>Given the sequence $(x_n)$ is unbounded, show that there exist a subsequence $(x_{n_k})$ such that $\lim(1/x_n)=0$. Given the sequence $(x_n)$ is unbounded, show that there exist a subsequence $(x_{n_k})$ such that $\lim(1/x_{n_k})=0$. I guess I have to prove that $(x_{n_k})$ diverge, but I don't know how to carry on. Thanks.</code> |
| <code>"The problem is who can we get to replace her" vs. "The problem is who we can get to replace her" "The problem is who can we get to replace her" vs. "The problem is who we can get to replace her" Which one is correct and why?</code> | <code>Changing subject and verb positions in statements and questions We always change subject and verb positions in whenever we want to ask a question such as "What is your name?". But when it comes to statements like the following, which form is correct? I don't understand what are you talking about. I don't understand what you are talking about. Another example Do you know what time is it? Do you know what time it is? Another example Do you care how do I feel about this? Do you care how I feel about this?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>quora</summary>
* Dataset: [quora](https://huggingface.co./datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co./datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 101,762 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 15 characters</li><li>mean: 52.48 characters</li><li>max: 164 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 52.86 characters</li><li>max: 162 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 56.18 characters</li><li>max: 298 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------|:-----------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Is pornography an art?</code> | <code>Can pornography be art?</code> | <code>Does pornography involve the objectification of women?</code> |
| <code>How can I improve my speaking in public?</code> | <code>How can I improve my public speaking ability?</code> | <code>How do I improve my vocabulary and English speaking skills? I am a 22 year old software engineer and come from a Telugu medium background. I am able to write well, but my speaking skills are poor.</code> |
| <code>How do I develop better people skills?</code> | <code>How can I get better people skills?</code> | <code>How do I get better at Minecraft?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>wikianswers_duplicates</summary>
* Dataset: [wikianswers_duplicates](https://huggingface.co./datasets/sentence-transformers/wikianswers-duplicates) at [9af6367](https://huggingface.co./datasets/sentence-transformers/wikianswers-duplicates/tree/9af6367d1ad084daf8a9de9c21bc33fcdc7770d0)
* Size: 10,000 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 14 characters</li><li>mean: 47.88 characters</li><li>max: 145 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 47.76 characters</li><li>max: 201 characters</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------|:-------------------------------------------------------------|
| <code>Can you get pregnant if tubes are clamped?</code> | <code>How long can your fallopian tubes stay clamped?</code> |
| <code>Is there any object that are triangular prism?</code> | <code>Is a trapezium the same as a triangular prism?</code> |
| <code>Where is the neutral switch located on a 2000 ford explorer?</code> | <code>Ford f150 1996 safety switch?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>all_nli</summary>
* Dataset: [all_nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,584 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 15 characters</li><li>mean: 72.82 characters</li><li>max: 300 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 34.11 characters</li><li>max: 126 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 36.38 characters</li><li>max: 121 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>simple_wiki</summary>
* Dataset: [simple_wiki](https://huggingface.co./datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co./datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
* Size: 102,225 evaluation samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
| | text | simplified |
|:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 24 characters</li><li>mean: 147.36 characters</li><li>max: 599 characters</li></ul> | <ul><li>min: 19 characters</li><li>mean: 124.94 characters</li><li>max: 540 characters</li></ul> |
* Samples:
| text | simplified |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|
| <code>It marks the southernmost point of the Bahà a de Banderas , upon which the port and resort city of Puerto Vallarta stands .</code> | <code>It is the most southern point of the Bahà a de Banderas .</code> |
| <code>The interiors of the stations resemble that of the former western Soviet nations , with chandeliers hanging from the corridors .</code> | <code>Its interior resembles that of western former Soviet nations with chandeliers hanging from the corridors .</code> |
| <code>The Senegal national football team , nicknamed the Lions of Teranga , is the national team of Senegal and is controlled by the Fà dà ration Sà nà galaise de Football .</code> | <code>Senegal national football team is the national football team of Senegal .</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>altlex</summary>
* Dataset: [altlex](https://huggingface.co./datasets/sentence-transformers/altlex) at [97eb209](https://huggingface.co./datasets/sentence-transformers/altlex/tree/97eb20963455c361d5a81c107c3596cff9e0cd82)
* Size: 112,696 evaluation samples
* Columns: <code>text</code> and <code>simplified</code>
* Approximate statistics based on the first 1000 samples:
| | text | simplified |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 characters</li><li>mean: 138.99 characters</li><li>max: 592 characters</li></ul> | <ul><li>min: 7 characters</li><li>mean: 119.43 characters</li><li>max: 517 characters</li></ul> |
* Samples:
| text | simplified |
|:-------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>14,000 ) referred to as `` The bush '' within the media .</code> | <code>14,000 ) called `` the bush '' in the media .</code> |
| <code>The next day he told Elizabeth everything he knew regarding Catherine and her pregnancy .</code> | <code>The next day he told Elizabeth everything .</code> |
| <code>Alice Ivers and Warren Tubbs had four sons and three daughters together .</code> | <code>Alice Ivers and Warren Tubbs had 4 sons and 3 daughters together .</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>flickr30k_captions</summary>
* Dataset: [flickr30k_captions](https://huggingface.co./datasets/sentence-transformers/flickr30k-captions) at [0ef0ce3](https://huggingface.co./datasets/sentence-transformers/flickr30k-captions/tree/0ef0ce31492fd8dc161ed483a40d3c4894f9a8c1)
* Size: 158,881 evaluation samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
| | caption1 | caption2 |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 characters</li><li>mean: 62.95 characters</li><li>max: 279 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 63.34 characters</li><li>max: 206 characters</li></ul> |
* Samples:
| caption1 | caption2 |
|:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------|
| <code>A person wearing sunglasses, a visor, and a British flag is carrying 6 Heineken bottles.</code> | <code>A woman wearing a blue visor is holding 5 bottles of Heineken beer.</code> |
| <code>Two older people hold hands while walking down a street alley with a group of people.</code> | <code>A group of senior citizens walking down narrow pathway.</code> |
| <code>View of bicyclists from behind during a race.</code> | <code>A Peloton of bicyclists riding down a road of tightly packed together houses.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>coco_captions</summary>
* Dataset: [coco_captions](https://huggingface.co./datasets/sentence-transformers/coco-captions) at [bd26018](https://huggingface.co./datasets/sentence-transformers/coco-captions/tree/bd2601822b9af9a41656d678ffbd5c80d81e276a)
* Size: 414,010 evaluation samples
* Columns: <code>caption1</code> and <code>caption2</code>
* Approximate statistics based on the first 1000 samples:
| | caption1 | caption2 |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 26 characters</li><li>mean: 51.9 characters</li><li>max: 130 characters</li></ul> | <ul><li>min: 28 characters</li><li>mean: 52.7 characters</li><li>max: 135 characters</li></ul> |
* Samples:
| caption1 | caption2 |
|:------------------------------------------------------------------|:----------------------------------------------------------------------|
| <code>A blurry photo of a man next to a refrigerator</code> | <code>The man in black is moving towards a refrigerator.</code> |
| <code>A young child holding a remote control in it's hand.</code> | <code>A boy holds a remote control up to the camera.</code> |
| <code>a big airplane that is parked on some concrete</code> | <code>A man standing next to a fighter jet under a cloudy sky.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>nli_for_simcse</summary>
* Dataset: [nli_for_simcse](https://huggingface.co./datasets/sentence-transformers/nli-for-simcse) at [926cae4](https://huggingface.co./datasets/sentence-transformers/nli-for-simcse/tree/926cae4af15a99b5cc2b053212bb52a4b377c418)
* Size: 274,951 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 characters</li><li>mean: 84.79 characters</li><li>max: 598 characters</li></ul> | <ul><li>min: 10 characters</li><li>mean: 44.26 characters</li><li>max: 172 characters</li></ul> | <ul><li>min: 9 characters</li><li>mean: 44.11 characters</li><li>max: 134 characters</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| <code>a man waiting for train with a blue coat blue jeans while holing a rope.</code> | <code>A man is waiting for a train.</code> | <code>A man is sitting on a greyhound bus waiting to leave.</code> |
| <code>Australia's floating dollar has apparently allowed the island continent to sail almost unscathed through the Asian crisis.</code> | <code>Australia has a floating dollar that has made them impervious to the problem in Asia.</code> | <code>Australia has a dollar that is heavily tied to Asia.</code> |
| <code>A city street in front of a business with a construction worker and road cones.</code> | <code>There is a city street with construction worker and road cones.</code> | <code>There are no cones in front of the city street.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
<details><summary>negation</summary>
* Dataset: [negation](https://huggingface.co./datasets/jinaai/negation-dataset) at [cd02256](https://huggingface.co./datasets/jinaai/negation-dataset/tree/cd02256426cc566d176285a987e5436f1cd01382)
* Size: 10,000 evaluation samples
* Columns: <code>anchor</code>, <code>entailment</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | entailment | negative |
|:--------|:------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 26 characters</li><li>mean: 69.49 characters</li><li>max: 229 characters</li></ul> | <ul><li>min: 15 characters</li><li>mean: 34.88 characters</li><li>max: 89 characters</li></ul> | <ul><li>min: 16 characters</li><li>mean: 38.68 characters</li><li>max: 87 characters</li></ul> |
* Samples:
| anchor | entailment | negative |
|:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| <code>Two men, one standing and one seated on the ground are attempting to wrangle a bull as dust from the action is being kicked up.</code> | <code>Two cowboys attempt to wrangle a bull.</code> | <code>Two cowboys do not attempt to wrangle a bull.</code> |
| <code>A woman dressed in black is silhouetted against a cloud darkened sky.</code> | <code>A woman in black stands in front of a dark, cloudy backdrop.</code> | <code>A woman in black does not stand in front of a dark, cloudy backdrop.</code> |
| <code>A kid in a blue shirt playing on a playground.</code> | <code>A kid playing on a playground wearing a blue shirt</code> | <code>A kid not playing on a playground wearing a black shirt</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
</details>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 0.2
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.2
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | wikititles loss | tatoeba loss | talks loss | europarl loss | global voices loss | muse loss | wikimatrix loss | opensubtitles loss | stackexchange loss | quora loss | wikianswers duplicates loss | all nli loss | simple wiki loss | altlex loss | flickr30k captions loss | coco captions loss | nli for simcse loss | negation loss |
|:------:|:-----:|:-------------:|:---------------:|:------------:|:----------:|:-------------:|:------------------:|:---------:|:---------------:|:------------------:|:------------------:|:----------:|:---------------------------:|:------------:|:----------------:|:-----------:|:-----------------------:|:------------------:|:-------------------:|:-------------:|
| 0.0000 | 1 | 38.504 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0327 | 1000 | 21.3661 | 15.2607 | 9.1892 | 11.6736 | 1.6431 | 6.6894 | 31.9579 | 3.0122 | 0.3541 | 5.1814 | 2.3756 | 4.9474 | 12.7699 | 0.5687 | 0.8911 | 21.0068 | 17.1302 | 10.8964 | 6.7603 |
| 0.0654 | 2000 | 9.8377 | 11.7637 | 7.1680 | 8.7697 | 1.6077 | 5.2310 | 27.4887 | 1.8375 | 0.3379 | 5.1107 | 2.2083 | 4.1690 | 12.0384 | 0.4837 | 0.7131 | 20.5401 | 17.8388 | 10.6706 | 7.0488 |
| 0.0982 | 3000 | 8.5279 | 10.8719 | 6.6160 | 8.3116 | 1.5638 | 4.7298 | 25.8572 | 1.6738 | 0.3152 | 5.1009 | 2.0893 | 3.7332 | 12.0452 | 0.4285 | 0.6519 | 20.2154 | 16.2715 | 10.7693 | 7.3144 |
| 0.1309 | 4000 | 7.8208 | 10.4614 | 5.4918 | 7.4421 | 1.4420 | 4.0505 | 24.9000 | 1.3462 | 0.2925 | 4.7643 | 2.1143 | 3.7457 | 11.6570 | 0.4390 | 0.6536 | 19.4405 | 16.0912 | 10.7537 | 7.2120 |
| 0.1636 | 5000 | 7.5347 | 9.5381 | 5.9489 | 7.4027 | 1.4858 | 4.0272 | 23.8335 | 1.2453 | 0.3027 | 3.1262 | 1.9170 | 3.7535 | 11.6186 | 0.4090 | 0.6131 | 18.9329 | 16.1769 | 10.1123 | 7.0750 |
| 0.1963 | 6000 | 7.1819 | 9.2175 | 5.3231 | 7.0836 | 1.4795 | 3.8328 | 23.1620 | 1.1609 | 0.2964 | 2.7653 | 1.9440 | 3.6610 | 11.2147 | 0.3714 | 0.5853 | 19.0478 | 16.4413 | 9.5790 | 6.8695 |
| 0.2291 | 7000 | 6.9852 | 9.0344 | 5.5773 | 6.7928 | 1.4409 | 3.9232 | 23.2098 | 1.1750 | 0.2877 | 2.9254 | 1.9411 | 3.5469 | 11.0744 | 0.4254 | 0.6293 | 19.0447 | 16.3774 | 9.5363 | 6.8393 |
| 0.2618 | 8000 | 6.8114 | 8.9620 | 5.1417 | 6.5466 | 1.4834 | 3.7100 | 22.9815 | 1.0679 | 0.2942 | 2.7687 | 2.0211 | 3.6063 | 11.3424 | 0.4447 | 0.6223 | 19.1836 | 16.5669 | 9.8785 | 6.8528 |
| 0.2945 | 9000 | 6.5487 | 8.6320 | 4.8710 | 6.5144 | 1.4156 | 3.5712 | 22.9660 | 1.0261 | 0.3051 | 3.0898 | 1.9981 | 3.4305 | 11.1448 | 0.3729 | 0.5814 | 18.8865 | 15.8581 | 9.5213 | 6.7567 |
| 0.3272 | 10000 | 6.7398 | 8.5630 | 4.7179 | 6.5025 | 1.3931 | 3.5699 | 22.5319 | 0.9916 | 0.2870 | 3.3385 | 1.9580 | 3.5807 | 11.2592 | 0.4155 | 0.6009 | 19.1387 | 16.6836 | 9.6300 | 6.6613 |
| 0.3599 | 11000 | 6.3915 | 8.4041 | 4.8985 | 6.2787 | 1.4081 | 3.5082 | 22.3204 | 0.9554 | 0.2916 | 2.9365 | 2.0176 | 3.3900 | 11.2956 | 0.3902 | 0.5783 | 18.6448 | 16.1241 | 9.5388 | 6.7295 |
| 0.3927 | 12000 | 6.5902 | 8.1888 | 4.7326 | 6.1930 | 1.4550 | 3.4999 | 22.1070 | 0.9736 | 0.2935 | 2.9612 | 1.9449 | 3.3281 | 11.0477 | 0.3821 | 0.5696 | 18.3227 | 16.1848 | 9.4772 | 7.0029 |
| 0.4254 | 13000 | 6.341 | 8.1827 | 4.3838 | 6.1052 | 1.4165 | 3.3944 | 21.9552 | 0.9076 | 0.2991 | 3.2272 | 1.9822 | 3.3494 | 11.1891 | 0.3790 | 0.5600 | 18.4394 | 15.9000 | 9.5644 | 6.9056 |
| 0.4581 | 14000 | 6.2067 | 8.1549 | 4.4833 | 6.0765 | 1.4055 | 3.3903 | 21.4785 | 0.8962 | 0.2919 | 2.8893 | 1.9540 | 3.3078 | 11.2100 | 0.3569 | 0.5461 | 18.7667 | 16.2978 | 9.2310 | 7.1290 |
| 0.4908 | 15000 | 6.2237 | 8.0711 | 4.4755 | 6.0087 | 1.3185 | 3.2888 | 21.3689 | 0.8433 | 0.2861 | 3.0129 | 1.9084 | 3.3279 | 11.1236 | 0.3730 | 0.5553 | 18.2711 | 15.7648 | 9.5295 | 7.0092 |
| 0.5236 | 16000 | 6.1058 | 8.0282 | 4.5076 | 5.8760 | 1.4234 | 3.3046 | 21.3568 | 0.8298 | 0.2826 | 2.8404 | 1.8920 | 3.2918 | 11.1140 | 0.3811 | 0.5550 | 18.2899 | 15.8630 | 9.4807 | 6.7585 |
| 0.5563 | 17000 | 6.3038 | 7.8679 | 4.4780 | 5.8461 | 1.4016 | 3.2279 | 21.0624 | 0.8205 | 0.2804 | 3.1359 | 1.9066 | 3.3205 | 11.0882 | 0.3913 | 0.5569 | 18.0693 | 15.7346 | 9.2854 | 6.9239 |
| 0.5890 | 18000 | 5.9824 | 7.7827 | 4.3199 | 5.7441 | 1.3582 | 3.1982 | 21.2444 | 0.8046 | 0.2797 | 2.7466 | 1.8717 | 3.3112 | 11.0553 | 0.3922 | 0.5568 | 18.0357 | 15.6732 | 9.6404 | 6.8331 |
| 0.6217 | 19000 | 6.0275 | 7.7201 | 4.3591 | 5.8132 | 1.3466 | 3.1888 | 20.9311 | 0.8019 | 0.2765 | 2.7674 | 1.8670 | 3.3082 | 10.9725 | 0.3996 | 0.5560 | 18.6346 | 16.2965 | 9.3774 | 6.9957 |
| 0.6545 | 20000 | 6.1161 | 7.6429 | 4.2702 | 5.7298 | 1.3670 | 3.1433 | 20.8899 | 0.7871 | 0.2761 | 2.7486 | 1.9230 | 3.2958 | 11.0207 | 0.3516 | 0.5361 | 18.2297 | 15.6363 | 9.6376 | 7.1608 |
| 0.6872 | 21000 | 5.9608 | 7.5852 | 4.2419 | 5.7760 | 1.3838 | 3.1878 | 20.9966 | 0.7837 | 0.2761 | 2.7098 | 1.8715 | 3.2293 | 10.8935 | 0.3514 | 0.5307 | 18.1424 | 15.5101 | 9.5346 | 7.0668 |
| 0.7199 | 22000 | 5.7594 | 7.5562 | 4.1123 | 5.6151 | 1.3605 | 3.0954 | 21.0032 | 0.7640 | 0.2769 | 2.6019 | 1.8378 | 3.2377 | 11.0744 | 0.3676 | 0.5431 | 18.2222 | 15.7103 | 9.8826 | 7.2662 |
| 0.7526 | 23000 | 5.7118 | 7.4714 | 4.0531 | 5.5998 | 1.3546 | 3.0778 | 20.8820 | 0.7518 | 0.2800 | 2.7544 | 1.8756 | 3.2316 | 10.9986 | 0.3571 | 0.5334 | 18.4476 | 15.7161 | 9.6617 | 7.3730 |
| 0.7853 | 24000 | 5.8024 | 7.4414 | 4.0829 | 5.6335 | 1.3383 | 3.0710 | 20.8217 | 0.7487 | 0.2713 | 2.6091 | 1.8695 | 3.2365 | 10.9929 | 0.3419 | 0.5213 | 18.4064 | 15.7831 | 9.7747 | 7.4290 |
| 0.8181 | 25000 | 5.8608 | 7.4348 | 4.0571 | 5.5651 | 1.3294 | 3.0518 | 20.6831 | 0.7393 | 0.2784 | 2.6330 | 1.8293 | 3.2197 | 10.9416 | 0.3484 | 0.5213 | 18.6359 | 15.8463 | 9.6883 | 7.4697 |
| 0.8508 | 26000 | 5.742 | 7.4188 | 3.9483 | 5.4911 | 1.3288 | 3.0402 | 20.7187 | 0.7376 | 0.2772 | 2.6812 | 1.8540 | 3.2415 | 10.9619 | 0.3560 | 0.5323 | 18.6388 | 15.7688 | 9.6707 | 7.3793 |
| 0.8835 | 27000 | 5.7429 | 7.3956 | 3.9016 | 5.4393 | 1.3277 | 3.0129 | 20.6748 | 0.7314 | 0.2820 | 2.6526 | 1.8798 | 3.1869 | 10.8744 | 0.3435 | 0.5228 | 18.5191 | 15.7264 | 9.5707 | 7.4266 |
| 0.9162 | 28000 | 5.7825 | 7.3748 | 3.9100 | 5.4261 | 1.3420 | 3.0142 | 20.6013 | 0.7263 | 0.2764 | 2.6708 | 1.8529 | 3.1748 | 10.8951 | 0.3491 | 0.5257 | 18.4914 | 15.5663 | 9.6552 | 7.2807 |
| 0.9490 | 29000 | 5.5179 | 7.3555 | 3.9046 | 5.3902 | 1.3283 | 2.9882 | 20.5828 | 0.7169 | 0.2732 | 2.6742 | 1.8457 | 3.1760 | 10.9126 | 0.3494 | 0.5246 | 18.5619 | 15.6746 | 9.6539 | 7.3694 |
| 0.9817 | 30000 | 5.4044 | 7.3390 | 3.8742 | 5.3713 | 1.3127 | 2.9796 | 20.5703 | 0.7120 | 0.2669 | 2.5612 | 1.8536 | 3.1602 | 10.9068 | 0.3464 | 0.5229 | 18.5389 | 15.6788 | 9.5690 | 7.4148 |
| 1.0000 | 30560 | - | 7.3346 | 3.8728 | 5.3680 | 1.3066 | 2.9780 | 20.5635 | 0.7107 | 0.2672 | 2.5046 | 1.8514 | 3.1596 | 10.9153 | 0.3467 | 0.5233 | 18.5525 | 15.6815 | 9.5687 | 7.4302 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.506 kWh
- **Carbon Emitted**: 0.197 kg of CO2
- **Hours Used**: 3.163 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.3.0.dev0
- Transformers: 4.45.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.0
- Datasets: 2.20.0
- Tokenizers: 0.20.1-dev.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |