lorenpe2 commited on
Commit
5587df9
·
1 Parent(s): 896fbac

Update README.md

Browse files

Adding measurements as shown in https://github.com/embeddings-benchmark/mteb . Running on https://www.it4i.cz/en/infrastructure/karolina (1x NVIDIA A100)

Files changed (1) hide show
  1. README.md +2713 -0
README.md CHANGED
@@ -7,6 +7,2719 @@ tags:
7
  - feature-extraction
8
  - sentence-similarity
9
  - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  # sentence-transformers/distiluse-base-multilingual-cased-v2
 
7
  - feature-extraction
8
  - sentence-similarity
9
  - transformers
10
+ - mteb
11
+ model-index:
12
+ - name: distiluse-base-multilingual-cased-v2
13
+ results:
14
+ - task:
15
+ type: Classification
16
+ dataset:
17
+ type: mteb/amazon_counterfactual
18
+ name: MTEB AmazonCounterfactualClassification (en)
19
+ config: en
20
+ split: test
21
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
22
+ metrics:
23
+ - type: accuracy
24
+ value: 71.80597014925372
25
+ - type: ap
26
+ value: 33.70263085714158
27
+ - type: f1
28
+ value: 65.44989712268762
29
+ - task:
30
+ type: Classification
31
+ dataset:
32
+ type: mteb/amazon_counterfactual
33
+ name: MTEB AmazonCounterfactualClassification (de)
34
+ config: de
35
+ split: test
36
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
37
+ metrics:
38
+ - type: accuracy
39
+ value: 68.13704496788009
40
+ - type: ap
41
+ value: 80.6706553308835
42
+ - type: f1
43
+ value: 66.6468090116337
44
+ - task:
45
+ type: Classification
46
+ dataset:
47
+ type: mteb/amazon_counterfactual
48
+ name: MTEB AmazonCounterfactualClassification (en-ext)
49
+ config: en-ext
50
+ split: test
51
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
52
+ metrics:
53
+ - type: accuracy
54
+ value: 72.96101949025487
55
+ - type: ap
56
+ value: 22.209148737301962
57
+ - type: f1
58
+ value: 60.428775420466906
59
+ - task:
60
+ type: Classification
61
+ dataset:
62
+ type: mteb/amazon_counterfactual
63
+ name: MTEB AmazonCounterfactualClassification (ja)
64
+ config: ja
65
+ split: test
66
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
67
+ metrics:
68
+ - type: accuracy
69
+ value: 65.38543897216275
70
+ - type: ap
71
+ value: 16.13590032328447
72
+ - type: f1
73
+ value: 53.20720298606364
74
+ - task:
75
+ type: Classification
76
+ dataset:
77
+ type: mteb/amazon_polarity
78
+ name: MTEB AmazonPolarityClassification
79
+ config: default
80
+ split: test
81
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
82
+ metrics:
83
+ - type: accuracy
84
+ value: 67.9988
85
+ - type: ap
86
+ value: 62.59891275364823
87
+ - type: f1
88
+ value: 67.73408963897285
89
+ - task:
90
+ type: Classification
91
+ dataset:
92
+ type: mteb/amazon_reviews_multi
93
+ name: MTEB AmazonReviewsClassification (en)
94
+ config: en
95
+ split: test
96
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
97
+ metrics:
98
+ - type: accuracy
99
+ value: 35.454
100
+ - type: f1
101
+ value: 35.01958914240701
102
+ - task:
103
+ type: Classification
104
+ dataset:
105
+ type: mteb/amazon_reviews_multi
106
+ name: MTEB AmazonReviewsClassification (de)
107
+ config: de
108
+ split: test
109
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
110
+ metrics:
111
+ - type: accuracy
112
+ value: 35.032000000000004
113
+ - type: f1
114
+ value: 33.93976447064354
115
+ - task:
116
+ type: Classification
117
+ dataset:
118
+ type: mteb/amazon_reviews_multi
119
+ name: MTEB AmazonReviewsClassification (es)
120
+ config: es
121
+ split: test
122
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
123
+ metrics:
124
+ - type: accuracy
125
+ value: 36.242000000000004
126
+ - type: f1
127
+ value: 34.98879083946539
128
+ - task:
129
+ type: Classification
130
+ dataset:
131
+ type: mteb/amazon_reviews_multi
132
+ name: MTEB AmazonReviewsClassification (fr)
133
+ config: fr
134
+ split: test
135
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
136
+ metrics:
137
+ - type: accuracy
138
+ value: 35.699999999999996
139
+ - type: f1
140
+ value: 34.74911268048424
141
+ - task:
142
+ type: Classification
143
+ dataset:
144
+ type: mteb/amazon_reviews_multi
145
+ name: MTEB AmazonReviewsClassification (ja)
146
+ config: ja
147
+ split: test
148
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
149
+ metrics:
150
+ - type: accuracy
151
+ value: 31.075999999999997
152
+ - type: f1
153
+ value: 30.525865114811996
154
+ - task:
155
+ type: Classification
156
+ dataset:
157
+ type: mteb/amazon_reviews_multi
158
+ name: MTEB AmazonReviewsClassification (zh)
159
+ config: zh
160
+ split: test
161
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
162
+ metrics:
163
+ - type: accuracy
164
+ value: 33.894000000000005
165
+ - type: f1
166
+ value: 32.63851365829613
167
+ - task:
168
+ type: Clustering
169
+ dataset:
170
+ type: mteb/arxiv-clustering-p2p
171
+ name: MTEB ArxivClusteringP2P
172
+ config: default
173
+ split: test
174
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
175
+ metrics:
176
+ - type: v_measure
177
+ value: 33.59372253035037
178
+ - task:
179
+ type: Reranking
180
+ dataset:
181
+ type: mteb/askubuntudupquestions-reranking
182
+ name: MTEB AskUbuntuDupQuestions
183
+ config: default
184
+ split: test
185
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
186
+ metrics:
187
+ - type: map
188
+ value: 53.752292029725815
189
+ - type: mrr
190
+ value: 68.26968737633557
191
+ - task:
192
+ type: STS
193
+ dataset:
194
+ type: mteb/biosses-sts
195
+ name: MTEB BIOSSES
196
+ config: default
197
+ split: test
198
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
199
+ metrics:
200
+ - type: cos_sim_pearson
201
+ value: 79.26094784825986
202
+ - type: cos_sim_spearman
203
+ value: 78.34033925464169
204
+ - type: euclidean_pearson
205
+ value: 77.43607353262966
206
+ - type: euclidean_spearman
207
+ value: 76.77765304536669
208
+ - type: manhattan_pearson
209
+ value: 77.43287991423313
210
+ - type: manhattan_spearman
211
+ value: 76.849341425823
212
+ - task:
213
+ type: Classification
214
+ dataset:
215
+ type: mteb/banking77
216
+ name: MTEB Banking77Classification
217
+ config: default
218
+ split: test
219
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
220
+ metrics:
221
+ - type: accuracy
222
+ value: 71.48051948051949
223
+ - type: f1
224
+ value: 70.45713884617551
225
+ - task:
226
+ type: Classification
227
+ dataset:
228
+ type: mteb/emotion
229
+ name: MTEB EmotionClassification
230
+ config: default
231
+ split: test
232
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
233
+ metrics:
234
+ - type: accuracy
235
+ value: 40.045
236
+ - type: f1
237
+ value: 36.59544493168501
238
+ - task:
239
+ type: Classification
240
+ dataset:
241
+ type: mteb/imdb
242
+ name: MTEB ImdbClassification
243
+ config: default
244
+ split: test
245
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
246
+ metrics:
247
+ - type: accuracy
248
+ value: 61.516799999999996
249
+ - type: ap
250
+ value: 57.302114956239514
251
+ - type: f1
252
+ value: 61.24392423075582
253
+ - task:
254
+ type: Classification
255
+ dataset:
256
+ type: mteb/mtop_domain
257
+ name: MTEB MTOPDomainClassification (en)
258
+ config: en
259
+ split: test
260
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
261
+ metrics:
262
+ - type: accuracy
263
+ value: 91.59142726858185
264
+ - type: f1
265
+ value: 91.16731589297895
266
+ - task:
267
+ type: Classification
268
+ dataset:
269
+ type: mteb/mtop_domain
270
+ name: MTEB MTOPDomainClassification (de)
271
+ config: de
272
+ split: test
273
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
274
+ metrics:
275
+ - type: accuracy
276
+ value: 86.19047619047619
277
+ - type: f1
278
+ value: 84.42185095665184
279
+ - task:
280
+ type: Classification
281
+ dataset:
282
+ type: mteb/mtop_domain
283
+ name: MTEB MTOPDomainClassification (es)
284
+ config: es
285
+ split: test
286
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
287
+ metrics:
288
+ - type: accuracy
289
+ value: 87.74516344229485
290
+ - type: f1
291
+ value: 86.89629934160831
292
+ - task:
293
+ type: Classification
294
+ dataset:
295
+ type: mteb/mtop_domain
296
+ name: MTEB MTOPDomainClassification (fr)
297
+ config: fr
298
+ split: test
299
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
300
+ metrics:
301
+ - type: accuracy
302
+ value: 84.61321641089883
303
+ - type: f1
304
+ value: 83.86194715158408
305
+ - task:
306
+ type: Classification
307
+ dataset:
308
+ type: mteb/mtop_domain
309
+ name: MTEB MTOPDomainClassification (hi)
310
+ config: hi
311
+ split: test
312
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
313
+ metrics:
314
+ - type: accuracy
315
+ value: 76.4144854786662
316
+ - type: f1
317
+ value: 74.66143814759417
318
+ - task:
319
+ type: Classification
320
+ dataset:
321
+ type: mteb/mtop_domain
322
+ name: MTEB MTOPDomainClassification (th)
323
+ config: th
324
+ split: test
325
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
326
+ metrics:
327
+ - type: accuracy
328
+ value: 73.61663652802893
329
+ - type: f1
330
+ value: 71.59773512640322
331
+ - task:
332
+ type: Classification
333
+ dataset:
334
+ type: mteb/mtop_intent
335
+ name: MTEB MTOPIntentClassification (en)
336
+ config: en
337
+ split: test
338
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
339
+ metrics:
340
+ - type: accuracy
341
+ value: 66.40218878248974
342
+ - type: f1
343
+ value: 44.0157655128108
344
+ - task:
345
+ type: Classification
346
+ dataset:
347
+ type: mteb/mtop_intent
348
+ name: MTEB MTOPIntentClassification (de)
349
+ config: de
350
+ split: test
351
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
352
+ metrics:
353
+ - type: accuracy
354
+ value: 59.208227669766124
355
+ - type: f1
356
+ value: 36.59415374962454
357
+ - task:
358
+ type: Classification
359
+ dataset:
360
+ type: mteb/mtop_intent
361
+ name: MTEB MTOPIntentClassification (es)
362
+ config: es
363
+ split: test
364
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
365
+ metrics:
366
+ - type: accuracy
367
+ value: 57.21147431621081
368
+ - type: f1
369
+ value: 38.46167201793877
370
+ - task:
371
+ type: Classification
372
+ dataset:
373
+ type: mteb/mtop_intent
374
+ name: MTEB MTOPIntentClassification (fr)
375
+ config: fr
376
+ split: test
377
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
378
+ metrics:
379
+ - type: accuracy
380
+ value: 53.40745380519887
381
+ - type: f1
382
+ value: 36.87813951228687
383
+ - task:
384
+ type: Classification
385
+ dataset:
386
+ type: mteb/mtop_intent
387
+ name: MTEB MTOPIntentClassification (hi)
388
+ config: hi
389
+ split: test
390
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
391
+ metrics:
392
+ - type: accuracy
393
+ value: 45.54320544998208
394
+ - type: f1
395
+ value: 28.091086881484788
396
+ - task:
397
+ type: Classification
398
+ dataset:
399
+ type: mteb/mtop_intent
400
+ name: MTEB MTOPIntentClassification (th)
401
+ config: th
402
+ split: test
403
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
404
+ metrics:
405
+ - type: accuracy
406
+ value: 47.732368896925855
407
+ - type: f1
408
+ value: 29.87429451601028
409
+ - task:
410
+ type: Classification
411
+ dataset:
412
+ type: mteb/amazon_massive_intent
413
+ name: MTEB MassiveIntentClassification (af)
414
+ config: af
415
+ split: test
416
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
417
+ metrics:
418
+ - type: accuracy
419
+ value: 40.02017484868864
420
+ - type: f1
421
+ value: 35.75859698769357
422
+ - task:
423
+ type: Classification
424
+ dataset:
425
+ type: mteb/amazon_massive_intent
426
+ name: MTEB MassiveIntentClassification (am)
427
+ config: am
428
+ split: test
429
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
430
+ metrics:
431
+ - type: accuracy
432
+ value: 2.347007397444519
433
+ - type: f1
434
+ value: 0.7465390699534603
435
+ - task:
436
+ type: Classification
437
+ dataset:
438
+ type: mteb/amazon_massive_intent
439
+ name: MTEB MassiveIntentClassification (ar)
440
+ config: ar
441
+ split: test
442
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
443
+ metrics:
444
+ - type: accuracy
445
+ value: 43.143913920645595
446
+ - type: f1
447
+ value: 38.85558637592047
448
+ - task:
449
+ type: Classification
450
+ dataset:
451
+ type: mteb/amazon_massive_intent
452
+ name: MTEB MassiveIntentClassification (az)
453
+ config: az
454
+ split: test
455
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
456
+ metrics:
457
+ - type: accuracy
458
+ value: 25.601882985877605
459
+ - type: f1
460
+ value: 25.205774742990254
461
+ - task:
462
+ type: Classification
463
+ dataset:
464
+ type: mteb/amazon_massive_intent
465
+ name: MTEB MassiveIntentClassification (bn)
466
+ config: bn
467
+ split: test
468
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
469
+ metrics:
470
+ - type: accuracy
471
+ value: 4.84196368527236
472
+ - type: f1
473
+ value: 1.7486302624639154
474
+ - task:
475
+ type: Classification
476
+ dataset:
477
+ type: mteb/amazon_massive_intent
478
+ name: MTEB MassiveIntentClassification (cy)
479
+ config: cy
480
+ split: test
481
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
482
+ metrics:
483
+ - type: accuracy
484
+ value: 15.43375924680565
485
+ - type: f1
486
+ value: 14.212012285498213
487
+ - task:
488
+ type: Classification
489
+ dataset:
490
+ type: mteb/amazon_massive_intent
491
+ name: MTEB MassiveIntentClassification (da)
492
+ config: da
493
+ split: test
494
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
495
+ metrics:
496
+ - type: accuracy
497
+ value: 52.33355749831876
498
+ - type: f1
499
+ value: 48.18484932318873
500
+ - task:
501
+ type: Classification
502
+ dataset:
503
+ type: mteb/amazon_massive_intent
504
+ name: MTEB MassiveIntentClassification (de)
505
+ config: de
506
+ split: test
507
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
508
+ metrics:
509
+ - type: accuracy
510
+ value: 51.573638197713514
511
+ - type: f1
512
+ value: 45.55934579164648
513
+ - task:
514
+ type: Classification
515
+ dataset:
516
+ type: mteb/amazon_massive_intent
517
+ name: MTEB MassiveIntentClassification (el)
518
+ config: el
519
+ split: test
520
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
521
+ metrics:
522
+ - type: accuracy
523
+ value: 49.65366509751178
524
+ - type: f1
525
+ value: 45.64683808611846
526
+ - task:
527
+ type: Classification
528
+ dataset:
529
+ type: mteb/amazon_massive_intent
530
+ name: MTEB MassiveIntentClassification (en)
531
+ config: en
532
+ split: test
533
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
534
+ metrics:
535
+ - type: accuracy
536
+ value: 66.71149966375253
537
+ - type: f1
538
+ value: 63.78255507050109
539
+ - task:
540
+ type: Classification
541
+ dataset:
542
+ type: mteb/amazon_massive_intent
543
+ name: MTEB MassiveIntentClassification (es)
544
+ config: es
545
+ split: test
546
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
547
+ metrics:
548
+ - type: accuracy
549
+ value: 56.573638197713514
550
+ - type: f1
551
+ value: 54.98029542986489
552
+ - task:
553
+ type: Classification
554
+ dataset:
555
+ type: mteb/amazon_massive_intent
556
+ name: MTEB MassiveIntentClassification (fa)
557
+ config: fa
558
+ split: test
559
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
560
+ metrics:
561
+ - type: accuracy
562
+ value: 55.35642232683256
563
+ - type: f1
564
+ value: 50.20214626269123
565
+ - task:
566
+ type: Classification
567
+ dataset:
568
+ type: mteb/amazon_massive_intent
569
+ name: MTEB MassiveIntentClassification (fi)
570
+ config: fi
571
+ split: test
572
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
573
+ metrics:
574
+ - type: accuracy
575
+ value: 45.71620712844654
576
+ - type: f1
577
+ value: 42.200836560817535
578
+ - task:
579
+ type: Classification
580
+ dataset:
581
+ type: mteb/amazon_massive_intent
582
+ name: MTEB MassiveIntentClassification (fr)
583
+ config: fr
584
+ split: test
585
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
586
+ metrics:
587
+ - type: accuracy
588
+ value: 57.02084734364491
589
+ - type: f1
590
+ value: 53.910650671151814
591
+ - task:
592
+ type: Classification
593
+ dataset:
594
+ type: mteb/amazon_massive_intent
595
+ name: MTEB MassiveIntentClassification (he)
596
+ config: he
597
+ split: test
598
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
599
+ metrics:
600
+ - type: accuracy
601
+ value: 46.7350369872226
602
+ - type: f1
603
+ value: 42.509857120773866
604
+ - task:
605
+ type: Classification
606
+ dataset:
607
+ type: mteb/amazon_massive_intent
608
+ name: MTEB MassiveIntentClassification (hi)
609
+ config: hi
610
+ split: test
611
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
612
+ metrics:
613
+ - type: accuracy
614
+ value: 48.55077336919973
615
+ - type: f1
616
+ value: 43.993275443482936
617
+ - task:
618
+ type: Classification
619
+ dataset:
620
+ type: mteb/amazon_massive_intent
621
+ name: MTEB MassiveIntentClassification (hu)
622
+ config: hu
623
+ split: test
624
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
625
+ metrics:
626
+ - type: accuracy
627
+ value: 50.64559515803631
628
+ - type: f1
629
+ value: 45.28464736653043
630
+ - task:
631
+ type: Classification
632
+ dataset:
633
+ type: mteb/amazon_massive_intent
634
+ name: MTEB MassiveIntentClassification (hy)
635
+ config: hy
636
+ split: test
637
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
638
+ metrics:
639
+ - type: accuracy
640
+ value: 40.79354404841964
641
+ - type: f1
642
+ value: 36.90100598587695
643
+ - task:
644
+ type: Classification
645
+ dataset:
646
+ type: mteb/amazon_massive_intent
647
+ name: MTEB MassiveIntentClassification (id)
648
+ config: id
649
+ split: test
650
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
651
+ metrics:
652
+ - type: accuracy
653
+ value: 55.99529253530599
654
+ - type: f1
655
+ value: 52.44999289764702
656
+ - task:
657
+ type: Classification
658
+ dataset:
659
+ type: mteb/amazon_massive_intent
660
+ name: MTEB MassiveIntentClassification (is)
661
+ config: is
662
+ split: test
663
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
664
+ metrics:
665
+ - type: accuracy
666
+ value: 16.079354404841965
667
+ - type: f1
668
+ value: 14.926428149458182
669
+ - task:
670
+ type: Classification
671
+ dataset:
672
+ type: mteb/amazon_massive_intent
673
+ name: MTEB MassiveIntentClassification (it)
674
+ config: it
675
+ split: test
676
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
677
+ metrics:
678
+ - type: accuracy
679
+ value: 57.64626765299259
680
+ - type: f1
681
+ value: 53.7737970315679
682
+ - task:
683
+ type: Classification
684
+ dataset:
685
+ type: mteb/amazon_massive_intent
686
+ name: MTEB MassiveIntentClassification (ja)
687
+ config: ja
688
+ split: test
689
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
690
+ metrics:
691
+ - type: accuracy
692
+ value: 55.329522528581045
693
+ - type: f1
694
+ value: 50.89055472943818
695
+ - task:
696
+ type: Classification
697
+ dataset:
698
+ type: mteb/amazon_massive_intent
699
+ name: MTEB MassiveIntentClassification (jv)
700
+ config: jv
701
+ split: test
702
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
703
+ metrics:
704
+ - type: accuracy
705
+ value: 28.164088769334228
706
+ - type: f1
707
+ value: 25.896264320477325
708
+ - task:
709
+ type: Classification
710
+ dataset:
711
+ type: mteb/amazon_massive_intent
712
+ name: MTEB MassiveIntentClassification (ka)
713
+ config: ka
714
+ split: test
715
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
716
+ metrics:
717
+ - type: accuracy
718
+ value: 29.411566913248148
719
+ - type: f1
720
+ value: 26.845594782986996
721
+ - task:
722
+ type: Classification
723
+ dataset:
724
+ type: mteb/amazon_massive_intent
725
+ name: MTEB MassiveIntentClassification (km)
726
+ config: km
727
+ split: test
728
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
729
+ metrics:
730
+ - type: accuracy
731
+ value: 4.791526563550773
732
+ - type: f1
733
+ value: 1.4491239093711443
734
+ - task:
735
+ type: Classification
736
+ dataset:
737
+ type: mteb/amazon_massive_intent
738
+ name: MTEB MassiveIntentClassification (kn)
739
+ config: kn
740
+ split: test
741
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
742
+ metrics:
743
+ - type: accuracy
744
+ value: 3.365837256220579
745
+ - type: f1
746
+ value: 1.3064783225018712
747
+ - task:
748
+ type: Classification
749
+ dataset:
750
+ type: mteb/amazon_massive_intent
751
+ name: MTEB MassiveIntentClassification (ko)
752
+ config: ko
753
+ split: test
754
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
755
+ metrics:
756
+ - type: accuracy
757
+ value: 49.9663752521856
758
+ - type: f1
759
+ value: 46.28463081207797
760
+ - task:
761
+ type: Classification
762
+ dataset:
763
+ type: mteb/amazon_massive_intent
764
+ name: MTEB MassiveIntentClassification (lv)
765
+ config: lv
766
+ split: test
767
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
768
+ metrics:
769
+ - type: accuracy
770
+ value: 44.31405514458642
771
+ - type: f1
772
+ value: 41.59880687298492
773
+ - task:
774
+ type: Classification
775
+ dataset:
776
+ type: mteb/amazon_massive_intent
777
+ name: MTEB MassiveIntentClassification (ml)
778
+ config: ml
779
+ split: test
780
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
781
+ metrics:
782
+ - type: accuracy
783
+ value: 3.2447881640887695
784
+ - type: f1
785
+ value: 1.1130430676330432
786
+ - task:
787
+ type: Classification
788
+ dataset:
789
+ type: mteb/amazon_massive_intent
790
+ name: MTEB MassiveIntentClassification (mn)
791
+ config: mn
792
+ split: test
793
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
794
+ metrics:
795
+ - type: accuracy
796
+ value: 40.36650975117687
797
+ - type: f1
798
+ value: 36.405182949755556
799
+ - task:
800
+ type: Classification
801
+ dataset:
802
+ type: mteb/amazon_massive_intent
803
+ name: MTEB MassiveIntentClassification (ms)
804
+ config: ms
805
+ split: test
806
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
807
+ metrics:
808
+ - type: accuracy
809
+ value: 47.969065232010756
810
+ - type: f1
811
+ value: 43.564724873023735
812
+ - task:
813
+ type: Classification
814
+ dataset:
815
+ type: mteb/amazon_massive_intent
816
+ name: MTEB MassiveIntentClassification (my)
817
+ config: my
818
+ split: test
819
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
820
+ metrics:
821
+ - type: accuracy
822
+ value: 38.483523873570945
823
+ - type: f1
824
+ value: 33.325537301233815
825
+ - task:
826
+ type: Classification
827
+ dataset:
828
+ type: mteb/amazon_massive_intent
829
+ name: MTEB MassiveIntentClassification (nb)
830
+ config: nb
831
+ split: test
832
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
833
+ metrics:
834
+ - type: accuracy
835
+ value: 46.008742434431745
836
+ - type: f1
837
+ value: 43.1074675107609
838
+ - task:
839
+ type: Classification
840
+ dataset:
841
+ type: mteb/amazon_massive_intent
842
+ name: MTEB MassiveIntentClassification (nl)
843
+ config: nl
844
+ split: test
845
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
846
+ metrics:
847
+ - type: accuracy
848
+ value: 58.29186281102891
849
+ - type: f1
850
+ value: 53.383269502572276
851
+ - task:
852
+ type: Classification
853
+ dataset:
854
+ type: mteb/amazon_massive_intent
855
+ name: MTEB MassiveIntentClassification (pl)
856
+ config: pl
857
+ split: test
858
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
859
+ metrics:
860
+ - type: accuracy
861
+ value: 53.10020174848689
862
+ - type: f1
863
+ value: 48.491009241597
864
+ - task:
865
+ type: Classification
866
+ dataset:
867
+ type: mteb/amazon_massive_intent
868
+ name: MTEB MassiveIntentClassification (pt)
869
+ config: pt
870
+ split: test
871
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
872
+ metrics:
873
+ - type: accuracy
874
+ value: 58.62811028917283
875
+ - type: f1
876
+ value: 56.39037901287144
877
+ - task:
878
+ type: Classification
879
+ dataset:
880
+ type: mteb/amazon_massive_intent
881
+ name: MTEB MassiveIntentClassification (ro)
882
+ config: ro
883
+ split: test
884
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
885
+ metrics:
886
+ - type: accuracy
887
+ value: 50.632145258910555
888
+ - type: f1
889
+ value: 47.52272047301657
890
+ - task:
891
+ type: Classification
892
+ dataset:
893
+ type: mteb/amazon_massive_intent
894
+ name: MTEB MassiveIntentClassification (ru)
895
+ config: ru
896
+ split: test
897
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
898
+ metrics:
899
+ - type: accuracy
900
+ value: 57.95897780766644
901
+ - type: f1
902
+ value: 53.79707075942384
903
+ - task:
904
+ type: Classification
905
+ dataset:
906
+ type: mteb/amazon_massive_intent
907
+ name: MTEB MassiveIntentClassification (sl)
908
+ config: sl
909
+ split: test
910
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
911
+ metrics:
912
+ - type: accuracy
913
+ value: 50.65904505716207
914
+ - type: f1
915
+ value: 48.69839976207718
916
+ - task:
917
+ type: Classification
918
+ dataset:
919
+ type: mteb/amazon_massive_intent
920
+ name: MTEB MassiveIntentClassification (sq)
921
+ config: sq
922
+ split: test
923
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
924
+ metrics:
925
+ - type: accuracy
926
+ value: 50.25218560860794
927
+ - type: f1
928
+ value: 46.925456055473525
929
+ - task:
930
+ type: Classification
931
+ dataset:
932
+ type: mteb/amazon_massive_intent
933
+ name: MTEB MassiveIntentClassification (sv)
934
+ config: sv
935
+ split: test
936
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
937
+ metrics:
938
+ - type: accuracy
939
+ value: 52.410894418291875
940
+ - type: f1
941
+ value: 47.64228703598475
942
+ - task:
943
+ type: Classification
944
+ dataset:
945
+ type: mteb/amazon_massive_intent
946
+ name: MTEB MassiveIntentClassification (sw)
947
+ config: sw
948
+ split: test
949
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
950
+ metrics:
951
+ - type: accuracy
952
+ value: 19.293880295897782
953
+ - type: f1
954
+ value: 17.66502971829105
955
+ - task:
956
+ type: Classification
957
+ dataset:
958
+ type: mteb/amazon_massive_intent
959
+ name: MTEB MassiveIntentClassification (ta)
960
+ config: ta
961
+ split: test
962
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
963
+ metrics:
964
+ - type: accuracy
965
+ value: 3.7861466039004705
966
+ - type: f1
967
+ value: 1.2869466371674323
968
+ - task:
969
+ type: Classification
970
+ dataset:
971
+ type: mteb/amazon_massive_intent
972
+ name: MTEB MassiveIntentClassification (te)
973
+ config: te
974
+ split: test
975
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
976
+ metrics:
977
+ - type: accuracy
978
+ value: 3.3591123066577
979
+ - type: f1
980
+ value: 1.3191646312270082
981
+ - task:
982
+ type: Classification
983
+ dataset:
984
+ type: mteb/amazon_massive_intent
985
+ name: MTEB MassiveIntentClassification (th)
986
+ config: th
987
+ split: test
988
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
989
+ metrics:
990
+ - type: accuracy
991
+ value: 45.279085406859444
992
+ - type: f1
993
+ value: 42.5424265903176
994
+ - task:
995
+ type: Classification
996
+ dataset:
997
+ type: mteb/amazon_massive_intent
998
+ name: MTEB MassiveIntentClassification (tl)
999
+ config: tl
1000
+ split: test
1001
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1002
+ metrics:
1003
+ - type: accuracy
1004
+ value: 28.43981170141224
1005
+ - type: f1
1006
+ value: 25.283226291015392
1007
+ - task:
1008
+ type: Classification
1009
+ dataset:
1010
+ type: mteb/amazon_massive_intent
1011
+ name: MTEB MassiveIntentClassification (tr)
1012
+ config: tr
1013
+ split: test
1014
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1015
+ metrics:
1016
+ - type: accuracy
1017
+ value: 50.474108944182916
1018
+ - type: f1
1019
+ value: 47.186574797430794
1020
+ - task:
1021
+ type: Classification
1022
+ dataset:
1023
+ type: mteb/amazon_massive_intent
1024
+ name: MTEB MassiveIntentClassification (ur)
1025
+ config: ur
1026
+ split: test
1027
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1028
+ metrics:
1029
+ - type: accuracy
1030
+ value: 46.02891728312038
1031
+ - type: f1
1032
+ value: 41.42008348263186
1033
+ - task:
1034
+ type: Classification
1035
+ dataset:
1036
+ type: mteb/amazon_massive_intent
1037
+ name: MTEB MassiveIntentClassification (vi)
1038
+ config: vi
1039
+ split: test
1040
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1041
+ metrics:
1042
+ - type: accuracy
1043
+ value: 45.252185608607945
1044
+ - type: f1
1045
+ value: 41.69045540062304
1046
+ - task:
1047
+ type: Classification
1048
+ dataset:
1049
+ type: mteb/amazon_massive_intent
1050
+ name: MTEB MassiveIntentClassification (zh-CN)
1051
+ config: zh-CN
1052
+ split: test
1053
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1054
+ metrics:
1055
+ - type: accuracy
1056
+ value: 59.21990585070611
1057
+ - type: f1
1058
+ value: 56.214011316092495
1059
+ - task:
1060
+ type: Classification
1061
+ dataset:
1062
+ type: mteb/amazon_massive_intent
1063
+ name: MTEB MassiveIntentClassification (zh-TW)
1064
+ config: zh-TW
1065
+ split: test
1066
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1067
+ metrics:
1068
+ - type: accuracy
1069
+ value: 54.96301277740416
1070
+ - type: f1
1071
+ value: 53.020268356293045
1072
+ - task:
1073
+ type: Classification
1074
+ dataset:
1075
+ type: mteb/amazon_massive_scenario
1076
+ name: MTEB MassiveScenarioClassification (af)
1077
+ config: af
1078
+ split: test
1079
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1080
+ metrics:
1081
+ - type: accuracy
1082
+ value: 53.665097511768664
1083
+ - type: f1
1084
+ value: 48.81662825721646
1085
+ - task:
1086
+ type: Classification
1087
+ dataset:
1088
+ type: mteb/amazon_massive_scenario
1089
+ name: MTEB MassiveScenarioClassification (am)
1090
+ config: am
1091
+ split: test
1092
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1093
+ metrics:
1094
+ - type: accuracy
1095
+ value: 7.720242098184263
1096
+ - type: f1
1097
+ value: 3.0172360162047553
1098
+ - task:
1099
+ type: Classification
1100
+ dataset:
1101
+ type: mteb/amazon_massive_scenario
1102
+ name: MTEB MassiveScenarioClassification (ar)
1103
+ config: ar
1104
+ split: test
1105
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1106
+ metrics:
1107
+ - type: accuracy
1108
+ value: 52.188971082716876
1109
+ - type: f1
1110
+ value: 52.360668734058116
1111
+ - task:
1112
+ type: Classification
1113
+ dataset:
1114
+ type: mteb/amazon_massive_scenario
1115
+ name: MTEB MassiveScenarioClassification (az)
1116
+ config: az
1117
+ split: test
1118
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1119
+ metrics:
1120
+ - type: accuracy
1121
+ value: 34.74781439139206
1122
+ - type: f1
1123
+ value: 32.55953852645334
1124
+ - task:
1125
+ type: Classification
1126
+ dataset:
1127
+ type: mteb/amazon_massive_scenario
1128
+ name: MTEB MassiveScenarioClassification (bn)
1129
+ config: bn
1130
+ split: test
1131
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1132
+ metrics:
1133
+ - type: accuracy
1134
+ value: 10.652320107599191
1135
+ - type: f1
1136
+ value: 6.439785272600618
1137
+ - task:
1138
+ type: Classification
1139
+ dataset:
1140
+ type: mteb/amazon_massive_scenario
1141
+ name: MTEB MassiveScenarioClassification (cy)
1142
+ config: cy
1143
+ split: test
1144
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1145
+ metrics:
1146
+ - type: accuracy
1147
+ value: 21.237390719569603
1148
+ - type: f1
1149
+ value: 18.428497244325158
1150
+ - task:
1151
+ type: Classification
1152
+ dataset:
1153
+ type: mteb/amazon_massive_scenario
1154
+ name: MTEB MassiveScenarioClassification (da)
1155
+ config: da
1156
+ split: test
1157
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1158
+ metrics:
1159
+ - type: accuracy
1160
+ value: 62.54875588433087
1161
+ - type: f1
1162
+ value: 60.69001958508912
1163
+ - task:
1164
+ type: Classification
1165
+ dataset:
1166
+ type: mteb/amazon_massive_scenario
1167
+ name: MTEB MassiveScenarioClassification (de)
1168
+ config: de
1169
+ split: test
1170
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1171
+ metrics:
1172
+ - type: accuracy
1173
+ value: 61.40215198386013
1174
+ - type: f1
1175
+ value: 58.07492599013545
1176
+ - task:
1177
+ type: Classification
1178
+ dataset:
1179
+ type: mteb/amazon_massive_scenario
1180
+ name: MTEB MassiveScenarioClassification (el)
1181
+ config: el
1182
+ split: test
1183
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1184
+ metrics:
1185
+ - type: accuracy
1186
+ value: 60.67585743106927
1187
+ - type: f1
1188
+ value: 58.055827627792056
1189
+ - task:
1190
+ type: Classification
1191
+ dataset:
1192
+ type: mteb/amazon_massive_scenario
1193
+ name: MTEB MassiveScenarioClassification (en)
1194
+ config: en
1195
+ split: test
1196
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1197
+ metrics:
1198
+ - type: accuracy
1199
+ value: 74.00470746469401
1200
+ - type: f1
1201
+ value: 72.22931856264793
1202
+ - task:
1203
+ type: Classification
1204
+ dataset:
1205
+ type: mteb/amazon_massive_scenario
1206
+ name: MTEB MassiveScenarioClassification (es)
1207
+ config: es
1208
+ split: test
1209
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1210
+ metrics:
1211
+ - type: accuracy
1212
+ value: 64.6133154001345
1213
+ - type: f1
1214
+ value: 63.345907502958184
1215
+ - task:
1216
+ type: Classification
1217
+ dataset:
1218
+ type: mteb/amazon_massive_scenario
1219
+ name: MTEB MassiveScenarioClassification (fa)
1220
+ config: fa
1221
+ split: test
1222
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1223
+ metrics:
1224
+ - type: accuracy
1225
+ value: 59.2434431741762
1226
+ - type: f1
1227
+ value: 57.40580117369346
1228
+ - task:
1229
+ type: Classification
1230
+ dataset:
1231
+ type: mteb/amazon_massive_scenario
1232
+ name: MTEB MassiveScenarioClassification (fi)
1233
+ config: fi
1234
+ split: test
1235
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1236
+ metrics:
1237
+ - type: accuracy
1238
+ value: 54.660390047074635
1239
+ - type: f1
1240
+ value: 51.45432689446743
1241
+ - task:
1242
+ type: Classification
1243
+ dataset:
1244
+ type: mteb/amazon_massive_scenario
1245
+ name: MTEB MassiveScenarioClassification (fr)
1246
+ config: fr
1247
+ split: test
1248
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1249
+ metrics:
1250
+ - type: accuracy
1251
+ value: 65.19502353732346
1252
+ - type: f1
1253
+ value: 63.50200684075783
1254
+ - task:
1255
+ type: Classification
1256
+ dataset:
1257
+ type: mteb/amazon_massive_scenario
1258
+ name: MTEB MassiveScenarioClassification (he)
1259
+ config: he
1260
+ split: test
1261
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1262
+ metrics:
1263
+ - type: accuracy
1264
+ value: 54.744451916610636
1265
+ - type: f1
1266
+ value: 52.621508448089294
1267
+ - task:
1268
+ type: Classification
1269
+ dataset:
1270
+ type: mteb/amazon_massive_scenario
1271
+ name: MTEB MassiveScenarioClassification (hi)
1272
+ config: hi
1273
+ split: test
1274
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1275
+ metrics:
1276
+ - type: accuracy
1277
+ value: 55.985205110961665
1278
+ - type: f1
1279
+ value: 53.70079438430524
1280
+ - task:
1281
+ type: Classification
1282
+ dataset:
1283
+ type: mteb/amazon_massive_scenario
1284
+ name: MTEB MassiveScenarioClassification (hu)
1285
+ config: hu
1286
+ split: test
1287
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1288
+ metrics:
1289
+ - type: accuracy
1290
+ value: 61.20040349697378
1291
+ - type: f1
1292
+ value: 58.5060672562612
1293
+ - task:
1294
+ type: Classification
1295
+ dataset:
1296
+ type: mteb/amazon_massive_scenario
1297
+ name: MTEB MassiveScenarioClassification (hy)
1298
+ config: hy
1299
+ split: test
1300
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1301
+ metrics:
1302
+ - type: accuracy
1303
+ value: 49.63349024882314
1304
+ - type: f1
1305
+ value: 47.39478501763526
1306
+ - task:
1307
+ type: Classification
1308
+ dataset:
1309
+ type: mteb/amazon_massive_scenario
1310
+ name: MTEB MassiveScenarioClassification (id)
1311
+ config: id
1312
+ split: test
1313
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1314
+ metrics:
1315
+ - type: accuracy
1316
+ value: 65.25218560860793
1317
+ - type: f1
1318
+ value: 63.45266636240826
1319
+ - task:
1320
+ type: Classification
1321
+ dataset:
1322
+ type: mteb/amazon_massive_scenario
1323
+ name: MTEB MassiveScenarioClassification (is)
1324
+ config: is
1325
+ split: test
1326
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1327
+ metrics:
1328
+ - type: accuracy
1329
+ value: 22.599193006052456
1330
+ - type: f1
1331
+ value: 21.93829297740852
1332
+ - task:
1333
+ type: Classification
1334
+ dataset:
1335
+ type: mteb/amazon_massive_scenario
1336
+ name: MTEB MassiveScenarioClassification (it)
1337
+ config: it
1338
+ split: test
1339
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1340
+ metrics:
1341
+ - type: accuracy
1342
+ value: 64.63349024882314
1343
+ - type: f1
1344
+ value: 63.15345402734339
1345
+ - task:
1346
+ type: Classification
1347
+ dataset:
1348
+ type: mteb/amazon_massive_scenario
1349
+ name: MTEB MassiveScenarioClassification (ja)
1350
+ config: ja
1351
+ split: test
1352
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1353
+ metrics:
1354
+ - type: accuracy
1355
+ value: 62.32010759919301
1356
+ - type: f1
1357
+ value: 60.02914271738089
1358
+ - task:
1359
+ type: Classification
1360
+ dataset:
1361
+ type: mteb/amazon_massive_scenario
1362
+ name: MTEB MassiveScenarioClassification (jv)
1363
+ config: jv
1364
+ split: test
1365
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1366
+ metrics:
1367
+ - type: accuracy
1368
+ value: 35.76664425016812
1369
+ - type: f1
1370
+ value: 33.52830525064859
1371
+ - task:
1372
+ type: Classification
1373
+ dataset:
1374
+ type: mteb/amazon_massive_scenario
1375
+ name: MTEB MassiveScenarioClassification (ka)
1376
+ config: ka
1377
+ split: test
1378
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1379
+ metrics:
1380
+ - type: accuracy
1381
+ value: 39.08204438466712
1382
+ - type: f1
1383
+ value: 37.312566552928736
1384
+ - task:
1385
+ type: Classification
1386
+ dataset:
1387
+ type: mteb/amazon_massive_scenario
1388
+ name: MTEB MassiveScenarioClassification (km)
1389
+ config: km
1390
+ split: test
1391
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1392
+ metrics:
1393
+ - type: accuracy
1394
+ value: 9.236718224613314
1395
+ - type: f1
1396
+ value: 3.41684484979606
1397
+ - task:
1398
+ type: Classification
1399
+ dataset:
1400
+ type: mteb/amazon_massive_scenario
1401
+ name: MTEB MassiveScenarioClassification (kn)
1402
+ config: kn
1403
+ split: test
1404
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1405
+ metrics:
1406
+ - type: accuracy
1407
+ value: 8.278412911903162
1408
+ - type: f1
1409
+ value: 3.9418094806677426
1410
+ - task:
1411
+ type: Classification
1412
+ dataset:
1413
+ type: mteb/amazon_massive_scenario
1414
+ name: MTEB MassiveScenarioClassification (ko)
1415
+ config: ko
1416
+ split: test
1417
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1418
+ metrics:
1419
+ - type: accuracy
1420
+ value: 57.595830531271005
1421
+ - type: f1
1422
+ value: 56.42188880877947
1423
+ - task:
1424
+ type: Classification
1425
+ dataset:
1426
+ type: mteb/amazon_massive_scenario
1427
+ name: MTEB MassiveScenarioClassification (lv)
1428
+ config: lv
1429
+ split: test
1430
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1431
+ metrics:
1432
+ - type: accuracy
1433
+ value: 51.72158708809683
1434
+ - type: f1
1435
+ value: 49.903136843275256
1436
+ - task:
1437
+ type: Classification
1438
+ dataset:
1439
+ type: mteb/amazon_massive_scenario
1440
+ name: MTEB MassiveScenarioClassification (ml)
1441
+ config: ml
1442
+ split: test
1443
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1444
+ metrics:
1445
+ - type: accuracy
1446
+ value: 8.254875588433089
1447
+ - type: f1
1448
+ value: 4.06813409809564
1449
+ - task:
1450
+ type: Classification
1451
+ dataset:
1452
+ type: mteb/amazon_massive_scenario
1453
+ name: MTEB MassiveScenarioClassification (mn)
1454
+ config: mn
1455
+ split: test
1456
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1457
+ metrics:
1458
+ - type: accuracy
1459
+ value: 47.20914593140552
1460
+ - type: f1
1461
+ value: 44.780121017940225
1462
+ - task:
1463
+ type: Classification
1464
+ dataset:
1465
+ type: mteb/amazon_massive_scenario
1466
+ name: MTEB MassiveScenarioClassification (ms)
1467
+ config: ms
1468
+ split: test
1469
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1470
+ metrics:
1471
+ - type: accuracy
1472
+ value: 55.64559515803632
1473
+ - type: f1
1474
+ value: 53.10457083056076
1475
+ - task:
1476
+ type: Classification
1477
+ dataset:
1478
+ type: mteb/amazon_massive_scenario
1479
+ name: MTEB MassiveScenarioClassification (my)
1480
+ config: my
1481
+ split: test
1482
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1483
+ metrics:
1484
+ - type: accuracy
1485
+ value: 43.308675184936114
1486
+ - type: f1
1487
+ value: 40.40654924373442
1488
+ - task:
1489
+ type: Classification
1490
+ dataset:
1491
+ type: mteb/amazon_massive_scenario
1492
+ name: MTEB MassiveScenarioClassification (nb)
1493
+ config: nb
1494
+ split: test
1495
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1496
+ metrics:
1497
+ - type: accuracy
1498
+ value: 54.983187626092814
1499
+ - type: f1
1500
+ value: 54.22408282419106
1501
+ - task:
1502
+ type: Classification
1503
+ dataset:
1504
+ type: mteb/amazon_massive_scenario
1505
+ name: MTEB MassiveScenarioClassification (nl)
1506
+ config: nl
1507
+ split: test
1508
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1509
+ metrics:
1510
+ - type: accuracy
1511
+ value: 67.4915938130464
1512
+ - type: f1
1513
+ value: 64.66608521628295
1514
+ - task:
1515
+ type: Classification
1516
+ dataset:
1517
+ type: mteb/amazon_massive_scenario
1518
+ name: MTEB MassiveScenarioClassification (pl)
1519
+ config: pl
1520
+ split: test
1521
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1522
+ metrics:
1523
+ - type: accuracy
1524
+ value: 61.28782784129119
1525
+ - type: f1
1526
+ value: 59.364955179296544
1527
+ - task:
1528
+ type: Classification
1529
+ dataset:
1530
+ type: mteb/amazon_massive_scenario
1531
+ name: MTEB MassiveScenarioClassification (pt)
1532
+ config: pt
1533
+ split: test
1534
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1535
+ metrics:
1536
+ - type: accuracy
1537
+ value: 64.26361802286483
1538
+ - type: f1
1539
+ value: 63.01306314842478
1540
+ - task:
1541
+ type: Classification
1542
+ dataset:
1543
+ type: mteb/amazon_massive_scenario
1544
+ name: MTEB MassiveScenarioClassification (ro)
1545
+ config: ro
1546
+ split: test
1547
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1548
+ metrics:
1549
+ - type: accuracy
1550
+ value: 58.02622730329523
1551
+ - type: f1
1552
+ value: 55.8928740774695
1553
+ - task:
1554
+ type: Classification
1555
+ dataset:
1556
+ type: mteb/amazon_massive_scenario
1557
+ name: MTEB MassiveScenarioClassification (ru)
1558
+ config: ru
1559
+ split: test
1560
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1561
+ metrics:
1562
+ - type: accuracy
1563
+ value: 65.41358439811701
1564
+ - type: f1
1565
+ value: 64.15512608670188
1566
+ - task:
1567
+ type: Classification
1568
+ dataset:
1569
+ type: mteb/amazon_massive_scenario
1570
+ name: MTEB MassiveScenarioClassification (sl)
1571
+ config: sl
1572
+ split: test
1573
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1574
+ metrics:
1575
+ - type: accuracy
1576
+ value: 59.357767316745125
1577
+ - type: f1
1578
+ value: 58.284479078165106
1579
+ - task:
1580
+ type: Classification
1581
+ dataset:
1582
+ type: mteb/amazon_massive_scenario
1583
+ name: MTEB MassiveScenarioClassification (sq)
1584
+ config: sq
1585
+ split: test
1586
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1587
+ metrics:
1588
+ - type: accuracy
1589
+ value: 62.686617350369865
1590
+ - type: f1
1591
+ value: 59.49767603465277
1592
+ - task:
1593
+ type: Classification
1594
+ dataset:
1595
+ type: mteb/amazon_massive_scenario
1596
+ name: MTEB MassiveScenarioClassification (sv)
1597
+ config: sv
1598
+ split: test
1599
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1600
+ metrics:
1601
+ - type: accuracy
1602
+ value: 64.35104236718225
1603
+ - type: f1
1604
+ value: 61.62298238070601
1605
+ - task:
1606
+ type: Classification
1607
+ dataset:
1608
+ type: mteb/amazon_massive_scenario
1609
+ name: MTEB MassiveScenarioClassification (sw)
1610
+ config: sw
1611
+ split: test
1612
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1613
+ metrics:
1614
+ - type: accuracy
1615
+ value: 25.12104909213181
1616
+ - type: f1
1617
+ value: 22.063961287382483
1618
+ - task:
1619
+ type: Classification
1620
+ dataset:
1621
+ type: mteb/amazon_massive_scenario
1622
+ name: MTEB MassiveScenarioClassification (ta)
1623
+ config: ta
1624
+ split: test
1625
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1626
+ metrics:
1627
+ - type: accuracy
1628
+ value: 8.671822461331539
1629
+ - type: f1
1630
+ value: 4.160922973001201
1631
+ - task:
1632
+ type: Classification
1633
+ dataset:
1634
+ type: mteb/amazon_massive_scenario
1635
+ name: MTEB MassiveScenarioClassification (te)
1636
+ config: te
1637
+ split: test
1638
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1639
+ metrics:
1640
+ - type: accuracy
1641
+ value: 7.821116341627439
1642
+ - type: f1
1643
+ value: 3.59600077788794
1644
+ - task:
1645
+ type: Classification
1646
+ dataset:
1647
+ type: mteb/amazon_massive_scenario
1648
+ name: MTEB MassiveScenarioClassification (th)
1649
+ config: th
1650
+ split: test
1651
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1652
+ metrics:
1653
+ - type: accuracy
1654
+ value: 54.64694014794888
1655
+ - type: f1
1656
+ value: 51.591586777977504
1657
+ - task:
1658
+ type: Classification
1659
+ dataset:
1660
+ type: mteb/amazon_massive_scenario
1661
+ name: MTEB MassiveScenarioClassification (tl)
1662
+ config: tl
1663
+ split: test
1664
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1665
+ metrics:
1666
+ - type: accuracy
1667
+ value: 36.08607935440485
1668
+ - type: f1
1669
+ value: 32.46731674317254
1670
+ - task:
1671
+ type: Classification
1672
+ dataset:
1673
+ type: mteb/amazon_massive_scenario
1674
+ name: MTEB MassiveScenarioClassification (tr)
1675
+ config: tr
1676
+ split: test
1677
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1678
+ metrics:
1679
+ - type: accuracy
1680
+ value: 60.89441829186282
1681
+ - type: f1
1682
+ value: 60.11999627480401
1683
+ - task:
1684
+ type: Classification
1685
+ dataset:
1686
+ type: mteb/amazon_massive_scenario
1687
+ name: MTEB MassiveScenarioClassification (ur)
1688
+ config: ur
1689
+ split: test
1690
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1691
+ metrics:
1692
+ - type: accuracy
1693
+ value: 54.707464694014796
1694
+ - type: f1
1695
+ value: 52.46709289947395
1696
+ - task:
1697
+ type: Classification
1698
+ dataset:
1699
+ type: mteb/amazon_massive_scenario
1700
+ name: MTEB MassiveScenarioClassification (vi)
1701
+ config: vi
1702
+ split: test
1703
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1704
+ metrics:
1705
+ - type: accuracy
1706
+ value: 55.1546738399462
1707
+ - type: f1
1708
+ value: 54.110902262235584
1709
+ - task:
1710
+ type: Classification
1711
+ dataset:
1712
+ type: mteb/amazon_massive_scenario
1713
+ name: MTEB MassiveScenarioClassification (zh-CN)
1714
+ config: zh-CN
1715
+ split: test
1716
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1717
+ metrics:
1718
+ - type: accuracy
1719
+ value: 66.4357767316745
1720
+ - type: f1
1721
+ value: 64.94684758602547
1722
+ - task:
1723
+ type: Classification
1724
+ dataset:
1725
+ type: mteb/amazon_massive_scenario
1726
+ name: MTEB MassiveScenarioClassification (zh-TW)
1727
+ config: zh-TW
1728
+ split: test
1729
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1730
+ metrics:
1731
+ - type: accuracy
1732
+ value: 62.88836583725623
1733
+ - type: f1
1734
+ value: 61.7106895387137
1735
+ - task:
1736
+ type: Reranking
1737
+ dataset:
1738
+ type: mteb/mind_small
1739
+ name: MTEB MindSmallReranking
1740
+ config: default
1741
+ split: test
1742
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1743
+ metrics:
1744
+ - type: map
1745
+ value: 30.389522323606887
1746
+ - type: mrr
1747
+ value: 31.507198662637208
1748
+ - task:
1749
+ type: STS
1750
+ dataset:
1751
+ type: mteb/sickr-sts
1752
+ name: MTEB SICK-R
1753
+ config: default
1754
+ split: test
1755
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1756
+ metrics:
1757
+ - type: cos_sim_pearson
1758
+ value: 81.18466748223793
1759
+ - type: cos_sim_spearman
1760
+ value: 75.24738784985722
1761
+ - type: euclidean_pearson
1762
+ value: 78.51159752223624
1763
+ - type: euclidean_spearman
1764
+ value: 75.46087065937311
1765
+ - type: manhattan_pearson
1766
+ value: 77.16743820738003
1767
+ - type: manhattan_spearman
1768
+ value: 73.49433694282183
1769
+ - task:
1770
+ type: STS
1771
+ dataset:
1772
+ type: mteb/sts12-sts
1773
+ name: MTEB STS12
1774
+ config: default
1775
+ split: test
1776
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1777
+ metrics:
1778
+ - type: cos_sim_pearson
1779
+ value: 79.35237266605724
1780
+ - type: cos_sim_spearman
1781
+ value: 72.95904349793416
1782
+ - type: euclidean_pearson
1783
+ value: 73.07895490202789
1784
+ - type: euclidean_spearman
1785
+ value: 71.66451640969629
1786
+ - type: manhattan_pearson
1787
+ value: 73.08359981539324
1788
+ - type: manhattan_spearman
1789
+ value: 71.91126963073746
1790
+ - task:
1791
+ type: STS
1792
+ dataset:
1793
+ type: mteb/sts13-sts
1794
+ name: MTEB STS13
1795
+ config: default
1796
+ split: test
1797
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1798
+ metrics:
1799
+ - type: cos_sim_pearson
1800
+ value: 68.26126180159085
1801
+ - type: cos_sim_spearman
1802
+ value: 70.5821267642011
1803
+ - type: euclidean_pearson
1804
+ value: 69.32005598610408
1805
+ - type: euclidean_spearman
1806
+ value: 69.91767420734864
1807
+ - type: manhattan_pearson
1808
+ value: 69.65574245013867
1809
+ - type: manhattan_spearman
1810
+ value: 70.22188522513176
1811
+ - task:
1812
+ type: STS
1813
+ dataset:
1814
+ type: mteb/sts14-sts
1815
+ name: MTEB STS14
1816
+ config: default
1817
+ split: test
1818
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1819
+ metrics:
1820
+ - type: cos_sim_pearson
1821
+ value: 73.8304467062826
1822
+ - type: cos_sim_spearman
1823
+ value: 70.28565248557119
1824
+ - type: euclidean_pearson
1825
+ value: 72.80361711138981
1826
+ - type: euclidean_spearman
1827
+ value: 70.63777081958187
1828
+ - type: manhattan_pearson
1829
+ value: 72.88892597106383
1830
+ - type: manhattan_spearman
1831
+ value: 70.86449280993048
1832
+ - task:
1833
+ type: STS
1834
+ dataset:
1835
+ type: mteb/sts15-sts
1836
+ name: MTEB STS15
1837
+ config: default
1838
+ split: test
1839
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1840
+ metrics:
1841
+ - type: cos_sim_pearson
1842
+ value: 81.41478503988436
1843
+ - type: cos_sim_spearman
1844
+ value: 81.94087130039843
1845
+ - type: euclidean_pearson
1846
+ value: 81.23351470401855
1847
+ - type: euclidean_spearman
1848
+ value: 81.43266713211875
1849
+ - type: manhattan_pearson
1850
+ value: 81.16667353510842
1851
+ - type: manhattan_spearman
1852
+ value: 81.24163241523068
1853
+ - task:
1854
+ type: STS
1855
+ dataset:
1856
+ type: mteb/sts16-sts
1857
+ name: MTEB STS16
1858
+ config: default
1859
+ split: test
1860
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1861
+ metrics:
1862
+ - type: cos_sim_pearson
1863
+ value: 75.08475719822
1864
+ - type: cos_sim_spearman
1865
+ value: 76.80438358515593
1866
+ - type: euclidean_pearson
1867
+ value: 75.90649123881406
1868
+ - type: euclidean_spearman
1869
+ value: 75.9482319164023
1870
+ - type: manhattan_pearson
1871
+ value: 75.64396465387331
1872
+ - type: manhattan_spearman
1873
+ value: 75.56185817375638
1874
+ - task:
1875
+ type: STS
1876
+ dataset:
1877
+ type: mteb/sts17-crosslingual-sts
1878
+ name: MTEB STS17 (ko-ko)
1879
+ config: ko-ko
1880
+ split: test
1881
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1882
+ metrics:
1883
+ - type: cos_sim_pearson
1884
+ value: 76.57756740555968
1885
+ - type: cos_sim_spearman
1886
+ value: 76.39843364267264
1887
+ - type: euclidean_pearson
1888
+ value: 75.40424583472578
1889
+ - type: euclidean_spearman
1890
+ value: 75.31307938562327
1891
+ - type: manhattan_pearson
1892
+ value: 74.73109587053861
1893
+ - type: manhattan_spearman
1894
+ value: 74.54667368714956
1895
+ - task:
1896
+ type: STS
1897
+ dataset:
1898
+ type: mteb/sts17-crosslingual-sts
1899
+ name: MTEB STS17 (ar-ar)
1900
+ config: ar-ar
1901
+ split: test
1902
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1903
+ metrics:
1904
+ - type: cos_sim_pearson
1905
+ value: 76.54105158056127
1906
+ - type: cos_sim_spearman
1907
+ value: 77.34104635434048
1908
+ - type: euclidean_pearson
1909
+ value: 75.28125389103582
1910
+ - type: euclidean_spearman
1911
+ value: 75.42418151345
1912
+ - type: manhattan_pearson
1913
+ value: 74.2691880967768
1914
+ - type: manhattan_spearman
1915
+ value: 74.14253657856801
1916
+ - task:
1917
+ type: STS
1918
+ dataset:
1919
+ type: mteb/sts17-crosslingual-sts
1920
+ name: MTEB STS17 (en-ar)
1921
+ config: en-ar
1922
+ split: test
1923
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1924
+ metrics:
1925
+ - type: cos_sim_pearson
1926
+ value: 77.02928931510961
1927
+ - type: cos_sim_spearman
1928
+ value: 77.45907270306685
1929
+ - type: euclidean_pearson
1930
+ value: 77.47937379735676
1931
+ - type: euclidean_spearman
1932
+ value: 77.21301895586583
1933
+ - type: manhattan_pearson
1934
+ value: 76.6676288138473
1935
+ - type: manhattan_spearman
1936
+ value: 76.7187203876331
1937
+ - task:
1938
+ type: STS
1939
+ dataset:
1940
+ type: mteb/sts17-crosslingual-sts
1941
+ name: MTEB STS17 (en-de)
1942
+ config: en-de
1943
+ split: test
1944
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1945
+ metrics:
1946
+ - type: cos_sim_pearson
1947
+ value: 79.85147526701459
1948
+ - type: cos_sim_spearman
1949
+ value: 80.24439450219447
1950
+ - type: euclidean_pearson
1951
+ value: 80.16905693851314
1952
+ - type: euclidean_spearman
1953
+ value: 79.30869641757035
1954
+ - type: manhattan_pearson
1955
+ value: 79.4830024429918
1956
+ - type: manhattan_spearman
1957
+ value: 78.64845690144578
1958
+ - task:
1959
+ type: STS
1960
+ dataset:
1961
+ type: mteb/sts17-crosslingual-sts
1962
+ name: MTEB STS17 (en-en)
1963
+ config: en-en
1964
+ split: test
1965
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1966
+ metrics:
1967
+ - type: cos_sim_pearson
1968
+ value: 85.23328074603815
1969
+ - type: cos_sim_spearman
1970
+ value: 86.18847213007086
1971
+ - type: euclidean_pearson
1972
+ value: 85.91331577309407
1973
+ - type: euclidean_spearman
1974
+ value: 85.89967500124904
1975
+ - type: manhattan_pearson
1976
+ value: 85.13857617716477
1977
+ - type: manhattan_spearman
1978
+ value: 84.82259586513993
1979
+ - task:
1980
+ type: STS
1981
+ dataset:
1982
+ type: mteb/sts17-crosslingual-sts
1983
+ name: MTEB STS17 (en-tr)
1984
+ config: en-tr
1985
+ split: test
1986
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1987
+ metrics:
1988
+ - type: cos_sim_pearson
1989
+ value: 75.38182956463326
1990
+ - type: cos_sim_spearman
1991
+ value: 74.34143229429068
1992
+ - type: euclidean_pearson
1993
+ value: 76.66151217728661
1994
+ - type: euclidean_spearman
1995
+ value: 75.68846427284615
1996
+ - type: manhattan_pearson
1997
+ value: 75.55942040372382
1998
+ - type: manhattan_spearman
1999
+ value: 74.67284614447757
2000
+ - task:
2001
+ type: STS
2002
+ dataset:
2003
+ type: mteb/sts17-crosslingual-sts
2004
+ name: MTEB STS17 (es-en)
2005
+ config: es-en
2006
+ split: test
2007
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2008
+ metrics:
2009
+ - type: cos_sim_pearson
2010
+ value: 76.94108940753875
2011
+ - type: cos_sim_spearman
2012
+ value: 77.39619379750977
2013
+ - type: euclidean_pearson
2014
+ value: 76.7736720732895
2015
+ - type: euclidean_spearman
2016
+ value: 76.29160645031078
2017
+ - type: manhattan_pearson
2018
+ value: 74.69337188827635
2019
+ - type: manhattan_spearman
2020
+ value: 74.47874230344613
2021
+ - task:
2022
+ type: STS
2023
+ dataset:
2024
+ type: mteb/sts17-crosslingual-sts
2025
+ name: MTEB STS17 (es-es)
2026
+ config: es-es
2027
+ split: test
2028
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2029
+ metrics:
2030
+ - type: cos_sim_pearson
2031
+ value: 83.99450399002905
2032
+ - type: cos_sim_spearman
2033
+ value: 83.71182297187157
2034
+ - type: euclidean_pearson
2035
+ value: 85.14304799861979
2036
+ - type: euclidean_spearman
2037
+ value: 83.69127569618827
2038
+ - type: manhattan_pearson
2039
+ value: 84.90116866712872
2040
+ - type: manhattan_spearman
2041
+ value: 83.31690582990805
2042
+ - task:
2043
+ type: STS
2044
+ dataset:
2045
+ type: mteb/sts17-crosslingual-sts
2046
+ name: MTEB STS17 (fr-en)
2047
+ config: fr-en
2048
+ split: test
2049
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2050
+ metrics:
2051
+ - type: cos_sim_pearson
2052
+ value: 79.12525161262887
2053
+ - type: cos_sim_spearman
2054
+ value: 79.27905944348255
2055
+ - type: euclidean_pearson
2056
+ value: 80.37847361563627
2057
+ - type: euclidean_spearman
2058
+ value: 79.45430583111714
2059
+ - type: manhattan_pearson
2060
+ value: 79.39311209355259
2061
+ - type: manhattan_spearman
2062
+ value: 78.35224091918822
2063
+ - task:
2064
+ type: STS
2065
+ dataset:
2066
+ type: mteb/sts17-crosslingual-sts
2067
+ name: MTEB STS17 (it-en)
2068
+ config: it-en
2069
+ split: test
2070
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2071
+ metrics:
2072
+ - type: cos_sim_pearson
2073
+ value: 80.35229136945712
2074
+ - type: cos_sim_spearman
2075
+ value: 80.82110464777067
2076
+ - type: euclidean_pearson
2077
+ value: 80.8820546236635
2078
+ - type: euclidean_spearman
2079
+ value: 80.52608029482144
2080
+ - type: manhattan_pearson
2081
+ value: 79.87881836256757
2082
+ - type: manhattan_spearman
2083
+ value: 79.21409642635105
2084
+ - task:
2085
+ type: STS
2086
+ dataset:
2087
+ type: mteb/sts17-crosslingual-sts
2088
+ name: MTEB STS17 (nl-en)
2089
+ config: nl-en
2090
+ split: test
2091
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2092
+ metrics:
2093
+ - type: cos_sim_pearson
2094
+ value: 80.08711291606406
2095
+ - type: cos_sim_spearman
2096
+ value: 80.50747550174945
2097
+ - type: euclidean_pearson
2098
+ value: 80.19128295947303
2099
+ - type: euclidean_spearman
2100
+ value: 79.80068556328985
2101
+ - type: manhattan_pearson
2102
+ value: 79.2805531467
2103
+ - type: manhattan_spearman
2104
+ value: 78.67459586691882
2105
+ - task:
2106
+ type: STS
2107
+ dataset:
2108
+ type: mteb/sts22-crosslingual-sts
2109
+ name: MTEB STS22 (en)
2110
+ config: en
2111
+ split: test
2112
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2113
+ metrics:
2114
+ - type: cos_sim_pearson
2115
+ value: 63.749476793187654
2116
+ - type: cos_sim_spearman
2117
+ value: 62.87618960301087
2118
+ - type: euclidean_pearson
2119
+ value: 62.00259194547161
2120
+ - type: euclidean_spearman
2121
+ value: 60.14134804263504
2122
+ - type: manhattan_pearson
2123
+ value: 61.85663435862556
2124
+ - type: manhattan_spearman
2125
+ value: 60.49194043559385
2126
+ - task:
2127
+ type: STS
2128
+ dataset:
2129
+ type: mteb/sts22-crosslingual-sts
2130
+ name: MTEB STS22 (de)
2131
+ config: de
2132
+ split: test
2133
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2134
+ metrics:
2135
+ - type: cos_sim_pearson
2136
+ value: 30.728588031668387
2137
+ - type: cos_sim_spearman
2138
+ value: 35.72910641917946
2139
+ - type: euclidean_pearson
2140
+ value: 27.727483814940634
2141
+ - type: euclidean_spearman
2142
+ value: 36.697908777201874
2143
+ - type: manhattan_pearson
2144
+ value: 26.887457740598375
2145
+ - type: manhattan_spearman
2146
+ value: 35.65193589164902
2147
+ - task:
2148
+ type: STS
2149
+ dataset:
2150
+ type: mteb/sts22-crosslingual-sts
2151
+ name: MTEB STS22 (es)
2152
+ config: es
2153
+ split: test
2154
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2155
+ metrics:
2156
+ - type: cos_sim_pearson
2157
+ value: 58.515732517017895
2158
+ - type: cos_sim_spearman
2159
+ value: 59.34352724163223
2160
+ - type: euclidean_pearson
2161
+ value: 59.37822334487575
2162
+ - type: euclidean_spearman
2163
+ value: 59.952966536792296
2164
+ - type: manhattan_pearson
2165
+ value: 59.34905346132589
2166
+ - type: manhattan_spearman
2167
+ value: 59.58363163864109
2168
+ - task:
2169
+ type: STS
2170
+ dataset:
2171
+ type: mteb/sts22-crosslingual-sts
2172
+ name: MTEB STS22 (pl)
2173
+ config: pl
2174
+ split: test
2175
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2176
+ metrics:
2177
+ - type: cos_sim_pearson
2178
+ value: 26.73251862968695
2179
+ - type: cos_sim_spearman
2180
+ value: 34.57702083368428
2181
+ - type: euclidean_pearson
2182
+ value: 11.555722679629111
2183
+ - type: euclidean_spearman
2184
+ value: 33.83302978677857
2185
+ - type: manhattan_pearson
2186
+ value: 11.30958607896797
2187
+ - type: manhattan_spearman
2188
+ value: 33.45113736058396
2189
+ - task:
2190
+ type: STS
2191
+ dataset:
2192
+ type: mteb/sts22-crosslingual-sts
2193
+ name: MTEB STS22 (tr)
2194
+ config: tr
2195
+ split: test
2196
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2197
+ metrics:
2198
+ - type: cos_sim_pearson
2199
+ value: 50.59069907623683
2200
+ - type: cos_sim_spearman
2201
+ value: 54.07437321160808
2202
+ - type: euclidean_pearson
2203
+ value: 55.31327716542195
2204
+ - type: euclidean_spearman
2205
+ value: 55.862881519289
2206
+ - type: manhattan_pearson
2207
+ value: 55.76874086920313
2208
+ - type: manhattan_spearman
2209
+ value: 56.389207939925434
2210
+ - task:
2211
+ type: STS
2212
+ dataset:
2213
+ type: mteb/sts22-crosslingual-sts
2214
+ name: MTEB STS22 (ar)
2215
+ config: ar
2216
+ split: test
2217
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2218
+ metrics:
2219
+ - type: cos_sim_pearson
2220
+ value: 43.19525519197726
2221
+ - type: cos_sim_spearman
2222
+ value: 49.04013064287781
2223
+ - type: euclidean_pearson
2224
+ value: 41.51101650799975
2225
+ - type: euclidean_spearman
2226
+ value: 45.69491981920255
2227
+ - type: manhattan_pearson
2228
+ value: 41.798306097489686
2229
+ - type: manhattan_spearman
2230
+ value: 45.88969916327865
2231
+ - task:
2232
+ type: STS
2233
+ dataset:
2234
+ type: mteb/sts22-crosslingual-sts
2235
+ name: MTEB STS22 (ru)
2236
+ config: ru
2237
+ split: test
2238
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2239
+ metrics:
2240
+ - type: cos_sim_pearson
2241
+ value: 46.72887212606245
2242
+ - type: cos_sim_spearman
2243
+ value: 52.40251410115027
2244
+ - type: euclidean_pearson
2245
+ value: 42.61087105318375
2246
+ - type: euclidean_spearman
2247
+ value: 49.31647979068464
2248
+ - type: manhattan_pearson
2249
+ value: 41.971488569524226
2250
+ - type: manhattan_spearman
2251
+ value: 48.603948080104416
2252
+ - task:
2253
+ type: STS
2254
+ dataset:
2255
+ type: mteb/sts22-crosslingual-sts
2256
+ name: MTEB STS22 (zh)
2257
+ config: zh
2258
+ split: test
2259
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2260
+ metrics:
2261
+ - type: cos_sim_pearson
2262
+ value: 50.282899703556204
2263
+ - type: cos_sim_spearman
2264
+ value: 54.31518993723914
2265
+ - type: euclidean_pearson
2266
+ value: 46.92686134587321
2267
+ - type: euclidean_spearman
2268
+ value: 50.4258942374202
2269
+ - type: manhattan_pearson
2270
+ value: 47.119373335384516
2271
+ - type: manhattan_spearman
2272
+ value: 50.290545214030644
2273
+ - task:
2274
+ type: STS
2275
+ dataset:
2276
+ type: mteb/sts22-crosslingual-sts
2277
+ name: MTEB STS22 (fr)
2278
+ config: fr
2279
+ split: test
2280
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2281
+ metrics:
2282
+ - type: cos_sim_pearson
2283
+ value: 76.6695578258507
2284
+ - type: cos_sim_spearman
2285
+ value: 76.41254265129491
2286
+ - type: euclidean_pearson
2287
+ value: 68.10573760855496
2288
+ - type: euclidean_spearman
2289
+ value: 71.53756176277794
2290
+ - type: manhattan_pearson
2291
+ value: 67.71247571269289
2292
+ - type: manhattan_spearman
2293
+ value: 71.52537846395397
2294
+ - task:
2295
+ type: STS
2296
+ dataset:
2297
+ type: mteb/sts22-crosslingual-sts
2298
+ name: MTEB STS22 (de-en)
2299
+ config: de-en
2300
+ split: test
2301
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2302
+ metrics:
2303
+ - type: cos_sim_pearson
2304
+ value: 52.39033873441029
2305
+ - type: cos_sim_spearman
2306
+ value: 47.50888019756861
2307
+ - type: euclidean_pearson
2308
+ value: 54.09329593694967
2309
+ - type: euclidean_spearman
2310
+ value: 46.745911343795036
2311
+ - type: manhattan_pearson
2312
+ value: 55.071517962875795
2313
+ - type: manhattan_spearman
2314
+ value: 47.82505012490346
2315
+ - task:
2316
+ type: STS
2317
+ dataset:
2318
+ type: mteb/sts22-crosslingual-sts
2319
+ name: MTEB STS22 (es-en)
2320
+ config: es-en
2321
+ split: test
2322
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2323
+ metrics:
2324
+ - type: cos_sim_pearson
2325
+ value: 66.22856680218524
2326
+ - type: cos_sim_spearman
2327
+ value: 68.9583551854743
2328
+ - type: euclidean_pearson
2329
+ value: 69.45990476537347
2330
+ - type: euclidean_spearman
2331
+ value: 69.51326488176926
2332
+ - type: manhattan_pearson
2333
+ value: 69.2654378415376
2334
+ - type: manhattan_spearman
2335
+ value: 69.25549968332008
2336
+ - task:
2337
+ type: STS
2338
+ dataset:
2339
+ type: mteb/sts22-crosslingual-sts
2340
+ name: MTEB STS22 (it)
2341
+ config: it
2342
+ split: test
2343
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2344
+ metrics:
2345
+ - type: cos_sim_pearson
2346
+ value: 63.86370050619784
2347
+ - type: cos_sim_spearman
2348
+ value: 65.10152541505573
2349
+ - type: euclidean_pearson
2350
+ value: 61.23738658178195
2351
+ - type: euclidean_spearman
2352
+ value: 62.77231926242124
2353
+ - type: manhattan_pearson
2354
+ value: 61.20141239111747
2355
+ - type: manhattan_spearman
2356
+ value: 62.58683030963466
2357
+ - task:
2358
+ type: STS
2359
+ dataset:
2360
+ type: mteb/sts22-crosslingual-sts
2361
+ name: MTEB STS22 (pl-en)
2362
+ config: pl-en
2363
+ split: test
2364
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2365
+ metrics:
2366
+ - type: cos_sim_pearson
2367
+ value: 70.24310112698741
2368
+ - type: cos_sim_spearman
2369
+ value: 71.32608389737901
2370
+ - type: euclidean_pearson
2371
+ value: 69.53167907457565
2372
+ - type: euclidean_spearman
2373
+ value: 69.24756304760876
2374
+ - type: manhattan_pearson
2375
+ value: 69.4432001214127
2376
+ - type: manhattan_spearman
2377
+ value: 69.92998467998946
2378
+ - task:
2379
+ type: STS
2380
+ dataset:
2381
+ type: mteb/sts22-crosslingual-sts
2382
+ name: MTEB STS22 (zh-en)
2383
+ config: zh-en
2384
+ split: test
2385
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2386
+ metrics:
2387
+ - type: cos_sim_pearson
2388
+ value: 62.96457033320131
2389
+ - type: cos_sim_spearman
2390
+ value: 61.750627475845285
2391
+ - type: euclidean_pearson
2392
+ value: 59.58377101704754
2393
+ - type: euclidean_spearman
2394
+ value: 55.91175172327044
2395
+ - type: manhattan_pearson
2396
+ value: 59.64672089274813
2397
+ - type: manhattan_spearman
2398
+ value: 55.93114256617111
2399
+ - task:
2400
+ type: STS
2401
+ dataset:
2402
+ type: mteb/sts22-crosslingual-sts
2403
+ name: MTEB STS22 (es-it)
2404
+ config: es-it
2405
+ split: test
2406
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2407
+ metrics:
2408
+ - type: cos_sim_pearson
2409
+ value: 60.54093974085284
2410
+ - type: cos_sim_spearman
2411
+ value: 63.277246213501634
2412
+ - type: euclidean_pearson
2413
+ value: 59.21790717375445
2414
+ - type: euclidean_spearman
2415
+ value: 60.77632900198518
2416
+ - type: manhattan_pearson
2417
+ value: 59.572573245502824
2418
+ - type: manhattan_spearman
2419
+ value: 60.86391917522135
2420
+ - task:
2421
+ type: STS
2422
+ dataset:
2423
+ type: mteb/sts22-crosslingual-sts
2424
+ name: MTEB STS22 (de-fr)
2425
+ config: de-fr
2426
+ split: test
2427
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2428
+ metrics:
2429
+ - type: cos_sim_pearson
2430
+ value: 56.2735220514599
2431
+ - type: cos_sim_spearman
2432
+ value: 60.76242915296164
2433
+ - type: euclidean_pearson
2434
+ value: 54.73358313453174
2435
+ - type: euclidean_spearman
2436
+ value: 59.01153256838316
2437
+ - type: manhattan_pearson
2438
+ value: 53.30971466711619
2439
+ - type: manhattan_spearman
2440
+ value: 57.427602926148516
2441
+ - task:
2442
+ type: STS
2443
+ dataset:
2444
+ type: mteb/sts22-crosslingual-sts
2445
+ name: MTEB STS22 (de-pl)
2446
+ config: de-pl
2447
+ split: test
2448
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2449
+ metrics:
2450
+ - type: cos_sim_pearson
2451
+ value: 33.210422466959244
2452
+ - type: cos_sim_spearman
2453
+ value: 36.09068930156353
2454
+ - type: euclidean_pearson
2455
+ value: 36.72425141682268
2456
+ - type: euclidean_spearman
2457
+ value: 33.3808081935963
2458
+ - type: manhattan_pearson
2459
+ value: 35.47249118003641
2460
+ - type: manhattan_spearman
2461
+ value: 31.964279432613434
2462
+ - task:
2463
+ type: STS
2464
+ dataset:
2465
+ type: mteb/sts22-crosslingual-sts
2466
+ name: MTEB STS22 (fr-pl)
2467
+ config: fr-pl
2468
+ split: test
2469
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2470
+ metrics:
2471
+ - type: cos_sim_pearson
2472
+ value: 62.721710627517034
2473
+ - type: cos_sim_spearman
2474
+ value: 61.97797868009122
2475
+ - type: euclidean_pearson
2476
+ value: 63.59898515445168
2477
+ - type: euclidean_spearman
2478
+ value: 84.51542547285167
2479
+ - type: manhattan_pearson
2480
+ value: 62.15380605376377
2481
+ - type: manhattan_spearman
2482
+ value: 73.24670207647144
2483
+ - task:
2484
+ type: STS
2485
+ dataset:
2486
+ type: mteb/stsbenchmark-sts
2487
+ name: MTEB STSBenchmark
2488
+ config: default
2489
+ split: test
2490
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2491
+ metrics:
2492
+ - type: cos_sim_pearson
2493
+ value: 81.6839488629375
2494
+ - type: cos_sim_spearman
2495
+ value: 80.75478754676419
2496
+ - type: euclidean_pearson
2497
+ value: 80.67588249670365
2498
+ - type: euclidean_spearman
2499
+ value: 80.2296669116562
2500
+ - type: manhattan_pearson
2501
+ value: 79.79275882752755
2502
+ - type: manhattan_spearman
2503
+ value: 79.41562131296504
2504
+ - task:
2505
+ type: Reranking
2506
+ dataset:
2507
+ type: mteb/scidocs-reranking
2508
+ name: MTEB SciDocsRR
2509
+ config: default
2510
+ split: test
2511
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2512
+ metrics:
2513
+ - type: map
2514
+ value: 69.21586199162861
2515
+ - type: mrr
2516
+ value: 88.86282290694054
2517
+ - task:
2518
+ type: PairClassification
2519
+ dataset:
2520
+ type: mteb/sprintduplicatequestions-pairclassification
2521
+ name: MTEB SprintDuplicateQuestions
2522
+ config: default
2523
+ split: test
2524
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2525
+ metrics:
2526
+ - type: cos_sim_accuracy
2527
+ value: 99.62079207920792
2528
+ - type: cos_sim_ap
2529
+ value: 87.14976457350163
2530
+ - type: cos_sim_f1
2531
+ value: 81.07317073170732
2532
+ - type: cos_sim_precision
2533
+ value: 79.14285714285715
2534
+ - type: cos_sim_recall
2535
+ value: 83.1
2536
+ - type: dot_accuracy
2537
+ value: 99.57722772277228
2538
+ - type: dot_ap
2539
+ value: 84.07833605976549
2540
+ - type: dot_f1
2541
+ value: 77.88461538461539
2542
+ - type: dot_precision
2543
+ value: 75.0
2544
+ - type: dot_recall
2545
+ value: 81.0
2546
+ - type: euclidean_accuracy
2547
+ value: 99.61287128712871
2548
+ - type: euclidean_ap
2549
+ value: 86.94165408325189
2550
+ - type: euclidean_f1
2551
+ value: 80.33596837944663
2552
+ - type: euclidean_precision
2553
+ value: 79.39453125
2554
+ - type: euclidean_recall
2555
+ value: 81.3
2556
+ - type: manhattan_accuracy
2557
+ value: 99.64653465346535
2558
+ - type: manhattan_ap
2559
+ value: 88.43495903247096
2560
+ - type: manhattan_f1
2561
+ value: 81.7193675889328
2562
+ - type: manhattan_precision
2563
+ value: 80.76171875
2564
+ - type: manhattan_recall
2565
+ value: 82.69999999999999
2566
+ - type: max_accuracy
2567
+ value: 99.64653465346535
2568
+ - type: max_ap
2569
+ value: 88.43495903247096
2570
+ - type: max_f1
2571
+ value: 81.7193675889328
2572
+ - task:
2573
+ type: Reranking
2574
+ dataset:
2575
+ type: mteb/stackoverflowdupquestions-reranking
2576
+ name: MTEB StackOverflowDupQuestions
2577
+ config: default
2578
+ split: test
2579
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2580
+ metrics:
2581
+ - type: map
2582
+ value: 41.92031499253617
2583
+ - type: mrr
2584
+ value: 42.11711389101095
2585
+ - task:
2586
+ type: Classification
2587
+ dataset:
2588
+ type: mteb/toxic_conversations_50k
2589
+ name: MTEB ToxicConversationsClassification
2590
+ config: default
2591
+ split: test
2592
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2593
+ metrics:
2594
+ - type: accuracy
2595
+ value: 69.0936
2596
+ - type: ap
2597
+ value: 13.464419132094955
2598
+ - type: f1
2599
+ value: 53.17756829624628
2600
+ - task:
2601
+ type: Classification
2602
+ dataset:
2603
+ type: mteb/tweet_sentiment_extraction
2604
+ name: MTEB TweetSentimentExtractionClassification
2605
+ config: default
2606
+ split: test
2607
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2608
+ metrics:
2609
+ - type: accuracy
2610
+ value: 59.968873797396704
2611
+ - type: f1
2612
+ value: 60.23697658216021
2613
+ - task:
2614
+ type: PairClassification
2615
+ dataset:
2616
+ type: mteb/twittersemeval2015-pairclassification
2617
+ name: MTEB TwitterSemEval2015
2618
+ config: default
2619
+ split: test
2620
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2621
+ metrics:
2622
+ - type: cos_sim_accuracy
2623
+ value: 82.7978780473267
2624
+ - type: cos_sim_ap
2625
+ value: 61.669291081213906
2626
+ - type: cos_sim_f1
2627
+ value: 57.68693665100927
2628
+ - type: cos_sim_precision
2629
+ value: 55.59089796917054
2630
+ - type: cos_sim_recall
2631
+ value: 59.94722955145119
2632
+ - type: dot_accuracy
2633
+ value: 81.68921738093819
2634
+ - type: dot_ap
2635
+ value: 57.39705387908134
2636
+ - type: dot_f1
2637
+ value: 54.72479298587434
2638
+ - type: dot_precision
2639
+ value: 50.814111261872455
2640
+ - type: dot_recall
2641
+ value: 59.287598944591025
2642
+ - type: euclidean_accuracy
2643
+ value: 82.85152291828098
2644
+ - type: euclidean_ap
2645
+ value: 62.456817170822255
2646
+ - type: euclidean_f1
2647
+ value: 58.32305795314425
2648
+ - type: euclidean_precision
2649
+ value: 54.745370370370374
2650
+ - type: euclidean_recall
2651
+ value: 62.401055408970976
2652
+ - type: manhattan_accuracy
2653
+ value: 82.76807534124099
2654
+ - type: manhattan_ap
2655
+ value: 61.85267667234618
2656
+ - type: manhattan_f1
2657
+ value: 57.62629336579428
2658
+ - type: manhattan_precision
2659
+ value: 53.49152542372882
2660
+ - type: manhattan_recall
2661
+ value: 62.45382585751978
2662
+ - type: max_accuracy
2663
+ value: 82.85152291828098
2664
+ - type: max_ap
2665
+ value: 62.456817170822255
2666
+ - type: max_f1
2667
+ value: 58.32305795314425
2668
+ - task:
2669
+ type: PairClassification
2670
+ dataset:
2671
+ type: mteb/twitterurlcorpus-pairclassification
2672
+ name: MTEB TwitterURLCorpus
2673
+ config: default
2674
+ split: test
2675
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2676
+ metrics:
2677
+ - type: cos_sim_accuracy
2678
+ value: 88.03896456708192
2679
+ - type: cos_sim_ap
2680
+ value: 84.0249558879327
2681
+ - type: cos_sim_f1
2682
+ value: 76.26290458870642
2683
+ - type: cos_sim_precision
2684
+ value: 72.93233082706767
2685
+ - type: cos_sim_recall
2686
+ value: 79.91222667077302
2687
+ - type: dot_accuracy
2688
+ value: 87.87402491558971
2689
+ - type: dot_ap
2690
+ value: 83.20076543059169
2691
+ - type: dot_f1
2692
+ value: 76.02826329490517
2693
+ - type: dot_precision
2694
+ value: 73.52898863472882
2695
+ - type: dot_recall
2696
+ value: 78.70341854019095
2697
+ - type: euclidean_accuracy
2698
+ value: 87.96328637404433
2699
+ - type: euclidean_ap
2700
+ value: 83.78378095020464
2701
+ - type: euclidean_f1
2702
+ value: 75.94917787742901
2703
+ - type: euclidean_precision
2704
+ value: 73.78739471391229
2705
+ - type: euclidean_recall
2706
+ value: 78.24145364952264
2707
+ - type: manhattan_accuracy
2708
+ value: 87.99239337136648
2709
+ - type: manhattan_ap
2710
+ value: 83.72045889779073
2711
+ - type: manhattan_f1
2712
+ value: 75.93527315914488
2713
+ - type: manhattan_precision
2714
+ value: 73.30180567497851
2715
+ - type: manhattan_recall
2716
+ value: 78.76501385894672
2717
+ - type: max_accuracy
2718
+ value: 88.03896456708192
2719
+ - type: max_ap
2720
+ value: 84.0249558879327
2721
+ - type: max_f1
2722
+ value: 76.26290458870642
2723
  ---
2724
 
2725
  # sentence-transformers/distiluse-base-multilingual-cased-v2