nreimers
commited on
Commit
·
2739dcf
1
Parent(s):
313db17
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +7 -0
- README.md +70 -44
- config.json +5 -1
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +2 -2
- sentence_bert_config.json +2 -1
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,20 +1,47 @@
|
|
1 |
---
|
2 |
-
|
3 |
tags:
|
4 |
-
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
-
This is the `bert-base-nli-mean-tokens` model from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings.
|
13 |
-
The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
You can use the model directly from the model repository to compute sentence embeddings:
|
18 |
```python
|
19 |
from transformers import AutoTokenizer, AutoModel
|
20 |
import torch
|
@@ -24,55 +51,54 @@ import torch
|
|
24 |
def mean_pooling(model_output, attention_mask):
|
25 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
26 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
27 |
-
|
28 |
-
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
29 |
-
return sum_embeddings / sum_mask
|
30 |
|
31 |
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
'The quick brown fox jumps over the lazy dog.']
|
37 |
|
38 |
-
#
|
39 |
-
tokenizer =
|
40 |
-
model = AutoModel.from_pretrained("sentence-transformers/bert-base-nli-mean-tokens")
|
41 |
|
42 |
-
#
|
43 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
|
44 |
-
|
45 |
-
#Compute token embeddings
|
46 |
with torch.no_grad():
|
47 |
model_output = model(**encoded_input)
|
48 |
|
49 |
-
#Perform pooling. In this case,
|
50 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
51 |
-
```
|
52 |
-
|
53 |
-
## Usage (Sentence-Transformers)
|
54 |
-
Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
|
55 |
-
```
|
56 |
-
pip install -U sentence-transformers
|
57 |
-
```
|
58 |
-
|
59 |
-
Then you can use the model like this:
|
60 |
-
```python
|
61 |
-
from sentence_transformers import SentenceTransformer
|
62 |
-
model = SentenceTransformer('bert-base-nli-mean-tokens')
|
63 |
-
sentences = ['This framework generates embeddings for each input sentence',
|
64 |
-
'Sentences are passed as a list of string.',
|
65 |
-
'The quick brown fox jumps over the lazy dog.']
|
66 |
-
sentence_embeddings = model.encode(sentences)
|
67 |
|
68 |
print("Sentence embeddings:")
|
69 |
print(sentence_embeddings)
|
70 |
```
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
## Citing & Authors
|
|
|
|
|
|
|
74 |
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
75 |
-
```
|
76 |
@inproceedings{reimers-2019-sentence-bert,
|
77 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
78 |
author = "Reimers, Nils and Gurevych, Iryna",
|
@@ -82,4 +108,4 @@ If you find this model helpful, feel free to cite our publication [Sentence-BERT
|
|
82 |
publisher = "Association for Computational Linguistics",
|
83 |
url = "http://arxiv.org/abs/1908.10084",
|
84 |
}
|
85 |
-
```
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
- transformers
|
9 |
+
- transformers
|
10 |
+
- transformers
|
11 |
+
- transformers
|
12 |
+
- transformers
|
13 |
---
|
14 |
|
15 |
+
# sentence-transformers/bert-base-nli-mean-tokens
|
|
|
|
|
16 |
|
17 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
## Usage (Sentence-Transformers)
|
22 |
+
|
23 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
24 |
+
|
25 |
+
```
|
26 |
+
pip install -U sentence-transformers
|
27 |
+
```
|
28 |
+
|
29 |
+
Then you can use the model like this:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from sentence_transformers import SentenceTransformer
|
33 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
34 |
+
|
35 |
+
model = SentenceTransformer('sentence-transformers/bert-base-nli-mean-tokens')
|
36 |
+
embeddings = model.encode(sentences)
|
37 |
+
print(embeddings)
|
38 |
+
```
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
## Usage (HuggingFace Transformers)
|
43 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
44 |
|
|
|
45 |
```python
|
46 |
from transformers import AutoTokenizer, AutoModel
|
47 |
import torch
|
|
|
51 |
def mean_pooling(model_output, attention_mask):
|
52 |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
53 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
54 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
|
|
55 |
|
56 |
|
57 |
+
# Sentences we want sentence embeddings for
|
58 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
59 |
|
60 |
+
# Load model from HuggingFace Hub
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/bert-base-nli-mean-tokens')
|
62 |
+
model = AutoModel.from_pretrained('sentence-transformers/bert-base-nli-mean-tokens')
|
|
|
63 |
|
64 |
+
# Tokenize sentences
|
65 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
66 |
|
67 |
+
# Compute token embeddings
|
|
|
|
|
|
|
68 |
with torch.no_grad():
|
69 |
model_output = model(**encoded_input)
|
70 |
|
71 |
+
# Perform pooling. In this case, max pooling.
|
72 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
print("Sentence embeddings:")
|
75 |
print(sentence_embeddings)
|
76 |
```
|
77 |
|
78 |
|
79 |
+
|
80 |
+
## Evaluation Results
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/bert-base-nli-mean-tokens)
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
## Full Model Architecture
|
89 |
+
```
|
90 |
+
SentenceTransformer(
|
91 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
92 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
93 |
+
)
|
94 |
+
```
|
95 |
+
|
96 |
## Citing & Authors
|
97 |
+
|
98 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
99 |
+
|
100 |
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
101 |
+
```bibtex
|
102 |
@inproceedings{reimers-2019-sentence-bert,
|
103 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
104 |
author = "Reimers, Nils and Gurevych, Iryna",
|
|
|
108 |
publisher = "Association for Computational Linguistics",
|
109 |
url = "http://arxiv.org/abs/1908.10084",
|
110 |
}
|
111 |
+
```
|
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"BertModel"
|
4 |
],
|
@@ -15,6 +16,9 @@
|
|
15 |
"num_attention_heads": 12,
|
16 |
"num_hidden_layers": 12,
|
17 |
"pad_token_id": 0,
|
|
|
|
|
18 |
"type_vocab_size": 2,
|
|
|
19 |
"vocab_size": 30522
|
20 |
-
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "old_models/bert-base-nli-mean-tokens/0_BERT",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
16 |
"num_attention_heads": 12,
|
17 |
"num_hidden_layers": 12,
|
18 |
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.7.0",
|
21 |
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
"vocab_size": 30522
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47a5ed8c3b0ea722db61d4db2b3caaec3f751e72e0ebddf39f59a3c8d9784385
|
3 |
+
size 438007537
|
sentence_bert_config.json
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length": 128
|
|
|
3 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "old_models/bert-base-nli-mean-tokens/0_BERT/special_tokens_map.json", "name_or_path": "old_models/bert-base-nli-mean-tokens/0_BERT", "do_basic_tokenize": true, "never_split": null}
|