--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google/vit-base-patch16-224-in21k datasets: - medmnist-v2 metrics: - accuracy - precision - recall - f1 model-index: - name: pneumoniamnist-vit-base-finetuned results: [] --- # pneumoniamnist-vit-base-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Accuracy: 0.9580 - Precision: 0.9355 - Recall: 0.9596 - F1: 0.9466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2447 | 0.9898 | 73 | 0.1538 | 0.9351 | 0.9013 | 0.9466 | 0.9200 | | 0.3466 | 1.9932 | 147 | 0.2451 | 0.9122 | 0.9197 | 0.8466 | 0.8750 | | 0.2074 | 2.9966 | 221 | 0.1711 | 0.9427 | 0.9538 | 0.8961 | 0.9203 | | 0.1928 | 4.0 | 295 | 0.1044 | 0.9618 | 0.9482 | 0.9525 | 0.9503 | | 0.2043 | 4.9898 | 368 | 0.1007 | 0.9580 | 0.9491 | 0.9403 | 0.9446 | | 0.1717 | 5.9932 | 442 | 0.0930 | 0.9618 | 0.9432 | 0.9598 | 0.9510 | | 0.1498 | 6.9966 | 516 | 0.0845 | 0.9637 | 0.9448 | 0.9635 | 0.9536 | | 0.1531 | 8.0 | 590 | 0.1661 | 0.9332 | 0.8974 | 0.9526 | 0.9188 | | 0.1451 | 8.9898 | 663 | 0.0760 | 0.9637 | 0.9464 | 0.9611 | 0.9534 | | 0.1263 | 9.8983 | 730 | 0.0824 | 0.9580 | 0.9355 | 0.9596 | 0.9466 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1