seemdog commited on
Commit
b792065
·
verified ·
1 Parent(s): e7d8d47

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -8
README.md CHANGED
@@ -12,13 +12,28 @@ license: apache-2.0
12
 
13
  ## Citation
14
  ```
15
- @misc{seo2024manwavmanchuasrmodel,
16
- title={ManWav: The First Manchu ASR Model},
17
- author={Jean Seo and Minha Kang and Sungjoo Byun and Sangah Lee},
18
- year={2024},
19
- eprint={2406.13502},
20
- archivePrefix={arXiv},
21
- primaryClass={cs.CL},
22
- url={https://arxiv.org/abs/2406.13502},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  }
24
  ```
 
12
 
13
  ## Citation
14
  ```
15
+ @inproceedings{seo-etal-2024-manwav,
16
+ title = "{M}an{W}av: The First {M}anchu {ASR} Model",
17
+ author = "Seo, Jean and
18
+ Kang, Minha and
19
+ Byun, SungJoo and
20
+ Lee, Sangah",
21
+ editor = "Serikov, Oleg and
22
+ Voloshina, Ekaterina and
23
+ Postnikova, Anna and
24
+ Muradoglu, Saliha and
25
+ Le Ferrand, Eric and
26
+ Klyachko, Elena and
27
+ Vylomova, Ekaterina and
28
+ Shavrina, Tatiana and
29
+ Tyers, Francis",
30
+ booktitle = "Proceedings of the 3rd Workshop on NLP Applications to Field Linguistics (Field Matters 2024)",
31
+ month = aug,
32
+ year = "2024",
33
+ address = "Bangkok, Thailand",
34
+ publisher = "Association for Computational Linguistics",
35
+ url = "https://aclanthology.org/2024.fieldmatters-1.2",
36
+ pages = "6--11",
37
+ abstract = "This study addresses the widening gap in Automatic Speech Recognition (ASR) research between high resource and extremely low resource languages, with a particular focus on Manchu, a severely endangered language. Manchu exemplifies the challenges faced by marginalized linguistic communities in accessing state-of-the-art technologies. In a pioneering effort, we introduce the first-ever Manchu ASR model ManWav, leveraging Wav2Vec2-XLSR-53. The results of the first Manchu ASR is promising, especially when trained with our augmented data. Wav2Vec2-XLSR-53 fine-tuned with augmented data demonstrates a 0.02 drop in CER and 0.13 drop in WER compared to the same base model fine-tuned with original data.",
38
  }
39
  ```