--- license: mit tags: - generated_from_trainer base_model: microsoft/deberta-v3-large metrics: - accuracy - precision - recall - f1 model-index: - name: taskA-DeBERTa-large-conf-1.0.0 results: [] --- # taskA-DeBERTa-large-conf-1.0.0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0557 - Accuracy: 0.8003 - Precision: 0.6080 - Recall: 0.5677 - F1: 0.5872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5219 | 0.39 | 500 | 0.5422 | 0.8147 | 0.725 | 0.4179 | 0.5302 | | 0.5372 | 0.78 | 1000 | 0.6654 | 0.7873 | 0.9194 | 0.1643 | 0.2787 | | 0.4255 | 1.16 | 1500 | 0.7670 | 0.8133 | 0.6774 | 0.4841 | 0.5647 | | 0.3873 | 1.55 | 2000 | 1.2863 | 0.7592 | 0.5132 | 0.7262 | 0.6014 | | 0.4026 | 1.94 | 2500 | 0.9782 | 0.7967 | 0.5964 | 0.5793 | 0.5877 | | 0.2893 | 2.33 | 3000 | 1.0557 | 0.8003 | 0.6080 | 0.5677 | 0.5872 | | 0.2513 | 2.71 | 3500 | 1.2664 | 0.7779 | 0.5470 | 0.6542 | 0.5958 | | 0.231 | 3.1 | 4000 | 1.2628 | 0.7895 | 0.5745 | 0.6110 | 0.5922 | | 0.1684 | 3.49 | 4500 | 1.1848 | 0.8061 | 0.6211 | 0.5764 | 0.5979 | | 0.1647 | 3.88 | 5000 | 1.2085 | 0.8068 | 0.6262 | 0.5648 | 0.5939 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2