|
--- |
|
license: mit |
|
language: |
|
- ru |
|
metrics: |
|
- f1 |
|
- roc_auc |
|
- precision |
|
- recall |
|
pipeline_tag: text-classification |
|
tags: |
|
- sentiment-analysis |
|
- multi-label-classification |
|
- sentiment analysis |
|
- rubert |
|
- sentiment |
|
- bert |
|
- tiny |
|
- russian |
|
- multilabel |
|
- classification |
|
- emotion-classification |
|
- emotion-recognition |
|
- emotion |
|
- emotion-detection |
|
datasets: |
|
- seara/ru_go_emotions |
|
--- |
|
|
|
This is [RuBERT-tiny2](https://huggingface.co./cointegrated/rubert-tiny2) model fine-tuned for __emotion classification__ of short __Russian__ texts. |
|
The task is a __multi-label classification__ with the following labels: |
|
|
|
```yaml |
|
0: admiration |
|
1: amusement |
|
2: anger |
|
3: annoyance |
|
4: approval |
|
5: caring |
|
6: confusion |
|
7: curiosity |
|
8: desire |
|
9: disappointment |
|
10: disapproval |
|
11: disgust |
|
12: embarrassment |
|
13: excitement |
|
14: fear |
|
15: gratitude |
|
16: grief |
|
17: joy |
|
18: love |
|
19: nervousness |
|
20: optimism |
|
21: pride |
|
22: realization |
|
23: relief |
|
24: remorse |
|
25: sadness |
|
26: surprise |
|
27: neutral |
|
``` |
|
|
|
Label to Russian label: |
|
|
|
```yaml |
|
admiration: восхищение |
|
amusement: веселье |
|
anger: злость |
|
annoyance: раздражение |
|
approval: одобрение |
|
caring: забота |
|
confusion: непонимание |
|
curiosity: любопытство |
|
desire: желание |
|
disappointment: разочарование |
|
disapproval: неодобрение |
|
disgust: отвращение |
|
embarrassment: смущение |
|
excitement: возбуждение |
|
fear: страх |
|
gratitude: признательность |
|
grief: горе |
|
joy: радость |
|
love: любовь |
|
nervousness: нервозность |
|
optimism: оптимизм |
|
pride: гордость |
|
realization: осознание |
|
relief: облегчение |
|
remorse: раскаяние |
|
sadness: грусть |
|
surprise: удивление |
|
neutral: нейтральность |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
model = pipeline(model="seara/rubert-tiny2-ru-go-emotions") |
|
model("Привет, ты мне нравишься!") |
|
# [{'label': 'love', 'score': 0.5955629944801331}] |
|
``` |
|
|
|
## Dataset |
|
|
|
This model was trained on translated GoEmotions dataset called [ru_go_emotions](https://huggingface.co./datasets/seara/ru_go_emotions). |
|
|
|
An overview of the training data can be found on [Hugging Face card](https://huggingface.co./datasets/seara/ru_go_emotions) and on |
|
[Github repository](https://github.com/searayeah/ru-goemotions). |
|
|
|
## Training |
|
|
|
Training were done in this [project](https://github.com/searayeah/bert-russian-sentiment-emotion) with this parameters: |
|
|
|
```yaml |
|
tokenizer.max_length: null |
|
batch_size: 64 |
|
optimizer: adam |
|
lr: 0.00001 |
|
weight_decay: 0 |
|
num_epochs: 31 |
|
``` |
|
|
|
## Eval results (on test split) |
|
|
|
| |precision|recall|f1-score|auc-roc|support| |
|
|--------------|---------|------|--------|-------|-------| |
|
|admiration |0.68 |0.61 |0.64 |0.92 |504 | |
|
|amusement |0.8 |0.84 |0.82 |0.96 |264 | |
|
|anger |0.55 |0.33 |0.42 |0.9 |198 | |
|
|annoyance |0.56 |0.03 |0.06 |0.81 |320 | |
|
|approval |0.6 |0.18 |0.28 |0.78 |351 | |
|
|caring |0.5 |0.04 |0.07 |0.84 |135 | |
|
|confusion |0.77 |0.07 |0.12 |0.9 |153 | |
|
|curiosity |0.51 |0.34 |0.41 |0.92 |284 | |
|
|desire |0.71 |0.18 |0.29 |0.88 |83 | |
|
|disappointment|0.0 |0.0 |0.0 |0.76 |151 | |
|
|disapproval |0.48 |0.1 |0.17 |0.85 |267 | |
|
|disgust |0.94 |0.12 |0.22 |0.9 |123 | |
|
|embarrassment |0.0 |0.0 |0.0 |0.84 |37 | |
|
|excitement |0.81 |0.2 |0.33 |0.88 |103 | |
|
|fear |0.73 |0.42 |0.54 |0.92 |78 | |
|
|gratitude |0.95 |0.89 |0.92 |0.99 |352 | |
|
|grief |0.0 |0.0 |0.0 |0.76 |6 | |
|
|joy |0.66 |0.52 |0.58 |0.93 |161 | |
|
|love |0.8 |0.79 |0.79 |0.97 |238 | |
|
|nervousness |0.0 |0.0 |0.0 |0.81 |23 | |
|
|optimism |0.67 |0.41 |0.51 |0.89 |186 | |
|
|pride |0.0 |0.0 |0.0 |0.89 |16 | |
|
|realization |0.0 |0.0 |0.0 |0.7 |145 | |
|
|relief |0.0 |0.0 |0.0 |0.84 |11 | |
|
|remorse |0.59 |0.71 |0.65 |0.99 |56 | |
|
|sadness |0.77 |0.37 |0.5 |0.89 |156 | |
|
|surprise |0.59 |0.35 |0.44 |0.88 |141 | |
|
|neutral |0.64 |0.58 |0.61 |0.81 |1787 | |
|
|micro avg |0.68 |0.43 |0.53 |0.93 |6329 | |
|
|macro avg |0.51 |0.29 |0.33 |0.87 |6329 | |
|
|weighted avg |0.62 |0.43 |0.48 |0.86 |6329 | |