File size: 2,088 Bytes
7bbb34a 23d6bae 7bbb34a 23d6bae 7bbb34a 23d6bae 7bbb34a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- EunsuKim/MATH
model-index:
- name: zephyr-7b-math-train-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-math-train-test
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co./alignment-handbook/zephyr-7b-sft-full) on the EunsuKim/MATH dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0130
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.746 | 1.0 | 10 | 0.6231 |
| 0.5258 | 2.0 | 20 | 0.3843 |
| 0.3183 | 3.0 | 30 | 0.1999 |
| 0.16 | 4.0 | 40 | 0.0864 |
| 0.0811 | 5.0 | 50 | 0.0496 |
| 0.0502 | 6.0 | 60 | 0.0345 |
| 0.035 | 7.0 | 70 | 0.0254 |
| 0.0241 | 8.0 | 80 | 0.0185 |
| 0.0165 | 9.0 | 90 | 0.0142 |
| 0.0129 | 10.0 | 100 | 0.0130 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
|