--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - recall model-index: - name: vca results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Recall type: recall value: 0.7866666666666666 --- # vca This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2021 - Recall: 0.7867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 9 | 0.4676 | 0.0 | | No log | 2.0 | 18 | 0.2918 | 0.0 | | No log | 3.0 | 27 | 0.2191 | 0.0 | | No log | 4.0 | 36 | 0.1971 | 0.1733 | | No log | 5.0 | 45 | 0.1695 | 0.4133 | | No log | 6.0 | 54 | 0.1693 | 0.52 | | No log | 7.0 | 63 | 0.1597 | 0.5867 | | No log | 8.0 | 72 | 0.1863 | 0.7733 | | No log | 9.0 | 81 | 0.1591 | 0.72 | | No log | 10.0 | 90 | 0.1543 | 0.72 | | No log | 11.0 | 99 | 0.1559 | 0.6933 | | No log | 12.0 | 108 | 0.1658 | 0.7333 | | No log | 13.0 | 117 | 0.1691 | 0.6533 | | No log | 14.0 | 126 | 0.1779 | 0.68 | | No log | 15.0 | 135 | 0.1635 | 0.8133 | | No log | 16.0 | 144 | 0.1765 | 0.6933 | | No log | 17.0 | 153 | 0.1679 | 0.7333 | | No log | 18.0 | 162 | 0.1694 | 0.7467 | | No log | 19.0 | 171 | 0.1770 | 0.8133 | | No log | 20.0 | 180 | 0.1692 | 0.7867 | | No log | 21.0 | 189 | 0.2021 | 0.7867 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3