--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - recall model-index: - name: vca results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Recall type: recall value: 0.7818181818181819 --- # vca This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3844 - Recall: 0.7818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 11 | 0.4763 | 0.6987 | | No log | 2.0 | 22 | 0.4438 | 0.6390 | | No log | 3.0 | 33 | 0.4511 | 0.5870 | | No log | 4.0 | 44 | 0.4084 | 0.7610 | | No log | 5.0 | 55 | 0.3562 | 0.8078 | | No log | 6.0 | 66 | 0.3844 | 0.7818 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3