merve HF staff commited on
Commit
37e8cd4
·
1 Parent(s): c4042c8

Upload train.py

Browse files
Files changed (1) hide show
  1. train.py +91 -0
train.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # let's import the libraries first
2
+ import sklearn
3
+ from sklearn.datasets import load_breast_cancer
4
+ from sklearn.tree import DecisionTreeClassifier
5
+ from sklearn.model_selection import train_test_split
6
+ from skops import card, hub_utils
7
+ import pickle
8
+ from sklearn.metrics import (ConfusionMatrixDisplay, confusion_matrix,
9
+ accuracy_score, f1_score)
10
+ import matplotlib.pyplot as plt
11
+ from pathlib import Path
12
+
13
+ # Load the data and split
14
+ X, y = load_breast_cancer(as_frame=True, return_X_y=True)
15
+ X_train, X_test, y_train, y_test = train_test_split(
16
+ X, y, test_size=0.3, random_state=42
17
+ )
18
+
19
+ # Train the model
20
+ model = DecisionTreeClassifier().fit(X_train, y_train)
21
+
22
+ # let's save the model
23
+ model_path = "example.pkl"
24
+ local_repo = "my-awesome-model"
25
+ with open(model_path, mode="bw") as f:
26
+ pickle.dump(model, file=f)
27
+
28
+ # we will now initialize a local repository
29
+ hub_utils.init(
30
+ model=model_path,
31
+ requirements=[f"scikit-learn={sklearn.__version__}"],
32
+ dst=local_repo,
33
+ task="tabular-classification",
34
+ data=X_test,
35
+ )
36
+
37
+
38
+ # create the card
39
+ model_card = card.Card(model, metadata=card.metadata_from_config(Path(destination_folder)))
40
+
41
+ limitations = "This model is not ready to be used in production."
42
+ model_description = "This is a DecisionTreeClassifier model trained on breast cancer dataset."
43
+ model_card_authors = "skops_user"
44
+ get_started_code = "import pickle \nwith open(dtc_pkl_filename, 'rb') as file: \n clf = pickle.load(file)"
45
+ citation_bibtex = "bibtex\n@inproceedings{...,year={2020}}"
46
+
47
+ # we can add the information using add
48
+ model_card.add(
49
+ citation_bibtex=citation_bibtex,
50
+ get_started_code=get_started_code,
51
+ model_card_authors=model_card_authors,
52
+ limitations=limitations,
53
+ model_description=model_description,
54
+ )
55
+
56
+ # we can set the metadata part directly
57
+ model_card.metadata.license = "mit"
58
+
59
+ # let's make a prediction and evaluate the model
60
+ y_pred = model.predict(X_test)
61
+
62
+ # we can pass metrics using add_metrics and pass details with add
63
+ model_card.add(eval_method="The model is evaluated using test split, on accuracy and F1 score with macro average.")
64
+ model_card.add_metrics(accuracy=accuracy_score(y_test, y_pred))
65
+ model_card.add_metrics(**{"f1 score": f1_score(y_test, y_pred, average="micro")})
66
+
67
+ # we will create a confusion matrix
68
+ cm = confusion_matrix(y_test, y_pred, labels=model.classes_)
69
+ disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
70
+ disp.plot()
71
+
72
+ # save the plot
73
+ plt.savefig(Path(local_repo) / "confusion_matrix.png")
74
+
75
+ # the plot will be written to the model card under the name confusion_matrix
76
+ # we pass the path of the plot itself
77
+ model_card.add_plot(confusion_matrix="confusion_matrix.png")
78
+
79
+ # save the card
80
+ model_card.save(Path(local_repo) / "README.md")
81
+
82
+ # if the repository doesn't exist remotely on the Hugging Face Hub, it will be created when we set create_remote to True
83
+ repo_id = "skops-user/my-awesome-model"
84
+ hub_utils.push(
85
+ repo_id=repo_id,
86
+ source=local_repo,
87
+ token=token,
88
+ commit_message="pushing files to the repo from the example!",
89
+ create_remote=True,
90
+ )
91
+