--- license: apache-2.0 base_model: t5-small tags: - summarization - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: text_summarization_t5_trainer results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1285 --- # text_summarization_t5_trainer This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.9562 - Rouge1: 0.1285 - Rouge2: 0.0396 - Rougel: 0.1104 - Rougelsum: 0.1102 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 16 | 3.5925 | 0.1421 | 0.0501 | 0.1208 | 0.1207 | 19.0 | | No log | 2.0 | 32 | 3.1487 | 0.1339 | 0.0428 | 0.1146 | 0.1145 | 19.0 | | No log | 3.0 | 48 | 2.9987 | 0.1285 | 0.04 | 0.1101 | 0.1099 | 19.0 | | No log | 4.0 | 64 | 2.9562 | 0.1285 | 0.0396 | 0.1104 | 0.1102 | 19.0 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0a0+29c30b1 - Datasets 2.14.5 - Tokenizers 0.14.1