--- license: mit language: - zh metrics: - accuracy - f1 (macro) - f1 (micro) base_model: - google-bert/bert-base-chinese pipeline_tag: text-classification tags: - Multi-label Text Classification datasets: - scfengv/TVL-general-layer-dataset library_name: adapter-transformers model-index: - name: scfengv/TVL_GeneralLayerClassifier results: - task: type: multi-label text-classification dataset: name: scfengv/TVL-general-layer-dataset type: scfengv/TVL-general-layer-dataset metrics: - name: Accuracy type: Accuracy value: 0.952902 - name: F1 score (Micro) type: F1 score (Micro) value: 0.968717 - name: F1 score (Macro) type: F1 score (Macro) value: 0.970818 --- # Model Details of TVL_GeneralLayerClassifier ## Base Model This model is fine-tuned from [google-bert/bert-base-chinese](https://huggingface.co./google-bert/bert-base-chinese). ## Model Architecture - **Type**: BERT-based text classification model - **Hidden Size**: 768 - **Number of Layers**: 12 - **Number of Attention Heads**: 12 - **Intermediate Size**: 3072 - **Max Sequence Length**: 512 - **Vocabulary Size**: 21,128 ## Key Components 1. **Embeddings** - Word Embeddings - Position Embeddings - Token Type Embeddings - Layer Normalization 2. **Encoder** - 12 layers of: - Self-Attention Mechanism - Intermediate Dense Layer - Output Dense Layer - Layer Normalization 3. **Pooler** - Dense layer for sentence representation 4. **Classifier** - Output layer with 4 classes ## Training Hyperparameters The model was trained using the following hyperparameters: ``` Learning rate: 1e-05 Batch size: 32 Number of epochs: 10 Optimizer: Adam Loss function: torch.nn.BCEWithLogitsLoss() ``` ## Training Infrastructure - **Hardware Type:** NVIDIA Quadro RTX8000 - **Library:** PyTorch - **Hours used:** 2hr 56mins ## Model Parameters - Total parameters: ~102M (estimated) - All parameters are in 32-bit floating point (F32) format ## Input Processing - Uses BERT tokenization - Supports sequences up to 512 tokens ## Output - 4-class multi-label classification ## Performance Metrics - Accuracy score: 0.952902 - F1 score (Micro): 0.968717 - F1 score (Macro): 0.970818 ## Training Dataset This model was trained on the [scfengv/TVL-general-layer-dataset](https://huggingface.co./datasets/scfengv/TVL-general-layer-dataset). ## Testing Dataset - [scfengv/TVL-general-layer-dataset](https://huggingface.co./datasets/scfengv/TVL-general-layer-dataset) - validation - Remove Emoji - Emoji2Desc - Remove Punctuation ## Usage ```python import torch from transformers import BertForSequenceClassification, BertTokenizer model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GeneralLayerClassifier") tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GeneralLayerClassifier") # Prepare your text text = "Your text here" ## Please refer to Dataset inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512) # Make prediction with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Print predictions print(predictions) ``` ## Additional Notes - This model is specifically designed for TVL general layer classification tasks. - It's based on the Chinese BERT model, indicating it's optimized for Chinese text. - **Hardware Type:** NVIDIA Quadro RTX8000 - **Library:** PyTorch - **Hours used:** 2hr 56mins ### Training Data - [scfengv/TVL-general-layer-dataset](https://huggingface.co./datasets/scfengv/TVL-general-layer-dataset) - train ### Training Hyperparameters The model was trained using the following hyperparameters: ``` Learning rate: 1e-05 Batch size: 32 Number of epochs: 10 Optimizer: Adam Loss function: torch.nn.BCEWithLogitsLoss() ``` ## Evaluation ### Testing Data - [scfengv/TVL-general-layer-dataset](https://huggingface.co./datasets/scfengv/TVL-general-layer-dataset) - validation - Remove Emoji - Emoji2Desc - Remove Punctuation ### Results (validation) - Accuracy: 0.952902 - F1 Score (Micro): 0.968717 - F1 Score (Macro): 0.970818