--- license: mit language: - ja pipeline_tag: text-generation base_model: - sbintuitions/sarashina2.2-1b --- # sbintuitions/sarashina2.2-1b-instruct-v0.1 ## Model Summary This repository provides Japanese language models trained by [SB Intuitions](https://www.sbintuitions.co.jp/). ## Model Details - Model type: Autoregressive Language Model - Language(s): Japanese ## Evaluation in Japanese and English Tasks | Model | Elyza-tasks-100 | Japanese MT Bench | English MT Bench | | ------------------------------------------------------------------------------------------------- | --------------- | ----------------- | ---------------- | | [Qwen/Qwen2.5-0.5B-instruct](https://huggingface.co./Qwen/Qwen2.5-0.5B-Instruct) | 1.53 | 2.95 | 4.98 | | **sarashina2.2-0.5B-instruct-v0.1** | **2.38** | **4.55** | **5.09** | | | | | | | [Rakuten/RakutenAI-2.0-mini-instruct](https://huggingface.co./Rakuten/RakutenAI-2.0-mini-instruct) | 2.41 | 4.49 | 5.13 | | [SakanaAI/TinySwallow-1.5B-Instruct](https://huggingface.co./SakanaAI/TinySwallow-1.5B-Instruct) | 2.81 | **5.24** | 6.31 | | [Qwen/Qwen2.5-1.5B-instruct](https://huggingface.co./Qwen/Qwen2.5-1.5B-Instruct) | 2.28 | 4.06 | **6.99** | | [llm-jp/llm-jp-3-1.8b-instruct3](https://huggingface.co./llm-jp/llm-jp-3-1.8b-instruct3) | 2.53 | 4.62 | 4.83 | | **sarashina2.2-1B-instruct-v0.1** | **2.88** | 5.09 | 6.46 | | | | | | | [google/gemma-2-2b-jpn-it](https://huggingface.co./google/gemma-2-2b-jpn-it) | 3.02 | 5.19 | 7.56 | | [Qwen/Qwen2.5-3B-instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) | 2.99 | 5.68 | **7.88** | | [llm-jp/llm-jp-3-3.7b-instruct3](https://huggingface.co./llm-jp/llm-jp-3-3.7b-instruct3) | 2.79 | 4.98 | 5.44 | | **sarashina2.2-3B-instruct-v0.1** | **3.75** | **6.51** | 7.71 | ## How to Use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed # モデルのロード model_name = "sbintuitions/sarashina2.2-1b-instruct-v0.1" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) chat_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) set_seed(123) # ユーザーの入力 user_input = [{"role": "user", "content": "こんにちは。あなたの名前を教えて"}] # モデルによる応答生成 responses = chat_pipeline( user_input, max_length=50, do_sample=True, num_return_sequences=3, ) # 応答を表示 for i, response in enumerate(responses, 1): print(f"Response {i}: {response['generated_text']}") # Response 1: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'Sarashina2と言います。本日のご要件を教えて下さい。'}] # Response 2: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'こんにちは!私の名前はSarashina2です。今日はどうしましたか?'}] # Response 3: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'Sarashina2と言います。本日のご要件を教えて下さい。'}] ``` ## Limitations This model has limited safety training. Therefore, it might generate some meaningless sequences, some inaccurate instances, or biased/objectionable outputs. Before using it, we would like developers to tune models based on human preferences and safety considerations. ## License MIT License