araffin commited on
Commit
ea7c35c
·
1 Parent(s): 43c8c27

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Ant-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2656.30 +/- 1954.85
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Ant-v3
20
+ type: Ant-v3
21
+ ---
22
+
23
+ # **TQC** Agent playing **Ant-v3**
24
+ This is a trained model of a **TQC** agent playing **Ant-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo tqc --env Ant-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo tqc --env Ant-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo tqc --env Ant-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo tqc --env Ant-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('learning_starts', 10000),
54
+ ('n_timesteps', 1000000.0),
55
+ ('policy', 'MlpPolicy'),
56
+ ('use_sde', False),
57
+ ('normalize', False)])
58
+ ```
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - env
5
+ - Ant-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - use_sde: false
16
+ - - log_folder
17
+ - logs/
18
+ - - log_interval
19
+ - 10
20
+ - - n_eval_envs
21
+ - 5
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - 1000000
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - 2
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 594371
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - true
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - learning_starts
3
+ - 10000
4
+ - - n_timesteps
5
+ - 1000000.0
6
+ - - policy
7
+ - MlpPolicy
8
+ - - use_sde
9
+ - false
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63af681143738bc375c7e9dc426e41e1afda3b45f7ac763bf13ea588f9a6bbf
3
+ size 1152721
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2656.2967433, "std_reward": 1954.8468841313706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T22:17:34.792956"}
tqc-Ant-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0362f5c2843a6064e1979650dbdfec521bda3c4c3fb504f3f6e2ee288614b2b1
3
+ size 4526596
tqc-Ant-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
tqc-Ant-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b5cd9dbb8b5d83321aa718046e0bcaf1a6204095c41c31e2281048c6609d732
3
+ size 792885
tqc-Ant-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cb0e63a15446f093e59f43c9e6333a389dacf59de22f1e7f5d242f41192aff0
3
+ size 1653405
tqc-Ant-v3/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7fa678830710>",
8
+ "_build": "<function TQCPolicy._build at 0x7fa6788307a0>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fa678830830>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7fa6788308c0>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7fa678830950>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7fa6788309e0>",
13
+ "forward": "<function TQCPolicy.forward at 0x7fa678830a70>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7fa678830b00>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fa678830b90>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7fa678890690>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "use_sde": false
22
+ },
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVRwkAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS2+FlGgKiUJ4AwAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUtvhZRoColCeAMAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLb4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQ28AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBS2+FlGgoiUNvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUS2+FlHViLg==",
26
+ "dtype": "float64",
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False]",
30
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 111
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gASVUwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAQEBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAQEBAQEBAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwiFlHViLg==",
39
+ "dtype": "float32",
40
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
41
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
42
+ "bounded_below": "[ True True True True True True True True]",
43
+ "bounded_above": "[ True True True True True True True True]",
44
+ "_np_random": "RandomState(MT19937)",
45
+ "_shape": [
46
+ 8
47
+ ]
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 1000000,
51
+ "_total_timesteps": 1000000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1635497685.1382663,
56
+ "learning_rate": 0.0003,
57
+ "tensorboard_log": null,
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "_last_obs": null,
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gASVBQQAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLb4aUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUJ4AwAA/vfx3sdO6D+CY7j5jCvuPzdBqW8mlbA/wOm18F1zcL9YUahOeuzUv0CgIqU3j+C/45UNSuOb8T+ONaajuYe+P0adtThIreC/2M7K5IbO4D+0yiU0oCnfvyomRPm5l+I/Ade+dceu4D+822rpoGwSQD7QS99/VwVAdKSC7AWt5D+u/BIkLYTrP4CGGvm+oYa/qvpghkT98D9yIpJ2SyoBQFDELdj/VhTA944yvduFIsDQfWL2UbFoP1LoiiM+04O/SEDrESz4yL/IU7UZenL6v25ttyQWpoY/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="
70
+ },
71
+ "_episode_num": 1913,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": 0.0,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gASVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfJ4/bWitskCUhpRSlIwBbJRN6AOMAXSUR0DBtADMX7+DdX2UKGgGaAloD0MIEp87wdZjs0CUhpRSlGgVTegDaBZHQMG4f3nZCfJ1fZQoaAZoCWgPQwhUqkTZW3RBQJSGlFKUaBVLF2gWR0DBuJoj+rEMdX2UKGgGaAloD0MI5US7CklklkCUhpRSlGgVTTUBaBZHQMG5/mWldkd1fZQoaAZoCWgPQwh1yw7x75GyQJSGlFKUaBVN6ANoFkdAwb584RVZLnV9lChoBmgJaA9DCHGt9rCnwKdAlIaUUpRoFU11AmgWR0DBwUYMc6vJdX2UKGgGaAloD0MI1ub/VVPQsUCUhpRSlGgVTegDaBZHQMHFtbsWweN1fZQoaAZoCWgPQwgWTPxR1HSkQJSGlFKUaBVNEwJoFkdAwcgVLns9jnV9lChoBmgJaA9DCE1mvK1sHKhAlIaUUpRoFU2CAmgWR0DByu0zqKP5dX2UKGgGaAloD0MIW+7MBKsss0CUhpRSlGgVTegDaBZHQMHPXiQLeAN1fZQoaAZoCWgPQwgx7Zv7oxukQJSGlFKUaBVNKAJoFkdAwdcxr9l2/3V9lChoBmgJaA9DCKd38X5M0LNAlIaUUpRoFU3oA2gWR0DB27e/DcdpdX2UKGgGaAloD0MIhzHp72XLc0CUhpRSlGgVS01oFkdAwdwPkEs8PnV9lChoBmgJaA9DCJ8FobyPm0hAlIaUUpRoFUsXaBZHQMHcKcUdq+J1fZQoaAZoCWgPQwgh5pKqjRWKQJSGlFKUaBVLr2gWR0DB3PErAgxKdX2UKGgGaAloD0MIlBEXgNakr0CUhpRSlGgVTWYDaBZHQMHg0FBhQWN1fZQoaAZoCWgPQwjEB3b8J96jQJSGlFKUaBVNNAJoFkdAweNa/2TPjXV9lChoBmgJaA9DCL3Fw3vGtLJAlIaUUpRoFU3oA2gWR0DB59dJlJ6IdX2UKGgGaAloD0MI51QyAPTUjUCUhpRSlGgVS9VoFkdAwejJEqlP8HV9lChoBmgJaA9DCCrhCb0OA69AlIaUUpRoFU3oA2gWR0DB7TnbEgnudX2UKGgGaAloD0MIK8JNRoE9s0CUhpRSlGgVTegDaBZHQMHxuFU6xPh1fZQoaAZoCWgPQwiZvAFm2tGyQJSGlFKUaBVN6ANoFkdAwfYxUy57PnV9lChoBmgJaA9DCA2JeyzpcLNAlIaUUpRoFU3oA2gWR0DB+rCaRZEEdX2UKGgGaAloD0MIz/V9OFAktECUhpRSlGgVTegDaBZHQMH/NSoOx0N1fZQoaAZoCWgPQwhdaoR+6iG0QJSGlFKUaBVN6ANoFkdAwgkj8kUsWnV9lChoBmgJaA9DCEHvjSGg5KtAlIaUUpRoFU3oA2gWR0DCDZTr1M/RdX2UKGgGaAloD0MIeLMG789Os0CUhpRSlGgVTegDaBZHQMISEKWkadd1fZQoaAZoCWgPQwh00ZDxNNyzQJSGlFKUaBVN6ANoFkdAwhaI54nndXV9lChoBmgJaA9DCJWbqKWlNbNAlIaUUpRoFU3oA2gWR0DCGxKQHRkVdX2UKGgGaAloD0MIwyreyMxqnECUhpRSlGgVTX8BaBZHQMIc0GdI5HV1fZQoaAZoCWgPQwi0yHa+Oy+0QJSGlFKUaBVN6ANoFkdAwiFQgyuZC3V9lChoBmgJaA9DCCE/G7mWBrNAlIaUUpRoFU3oA2gWR0DCJc/dVNpNdX2UKGgGaAloD0MIP62iP5hBskCUhpRSlGgVTegDaBZHQMIqUUEgW8B1fZQoaAZoCWgPQwhCeR9H85eWQJSGlFKUaBVNIQFoFkdAwiub4eLeh3V9lChoBmgJaA9DCIp1qnwvZqdAlIaUUpRoFU2DAmgWR0DCLoK5qdpZdX2UKGgGaAloD0MIaEEo73uRs0CUhpRSlGgVTegDaBZHQMIy+7f51vF1fZQoaAZoCWgPQwjBOSNK+w1yQJSGlFKUaBVLSmgWR0DCM093+uNhdX2UKGgGaAloD0MIp88OuM5asUCUhpRSlGgVTegDaBZHQMI8Y/qX4TN1fZQoaAZoCWgPQwgeNLvujVa0QJSGlFKUaBVN6ANoFkdAwkDmlv60pnV9lChoBmgJaA9DCE1NgjfgZ7JAlIaUUpRoFU3oA2gWR0DCRV25c1O1dX2UKGgGaAloD0MIm8sNhro4cECUhpRSlGgVS1BoFkdAwkW5kfcN6XV9lChoBmgJaA9DCGVvKeezmLNAlIaUUpRoFU3oA2gWR0DCSjNh1DBudX2UKGgGaAloD0MIG/Z7YsUys0CUhpRSlGgVTegDaBZHQMJOo4EGJN11fZQoaAZoCWgPQwgUdlH0kAazQJSGlFKUaBVN6ANoFkdAwlMjrE9+w3V9lChoBmgJaA9DCIANiBBrGLNAlIaUUpRoFU3PA2gWR0DCV3wsZpBYdX2UKGgGaAloD0MIVpv/Vw1stECUhpRSlGgVTegDaBZHQMJb8E2pAD91fZQoaAZoCWgPQwjpmzQN6lqzQJSGlFKUaBVN6ANoFkdAwmBo9g4OtnV9lChoBmgJaA9DCK4Mqg2uz6FAlIaUUpRoFU3rAWgWR0DCYqBNbkfcdX2UKGgGaAloD0MIpvELr2RQr0CUhpRSlGgVTegDaBZHQMJsh3Onl4l1fZQoaAZoCWgPQwhhTzv8ZbOzQJSGlFKUaBVN6ANoFkdAwnEHcGkeqHV9lChoBmgJaA9DCK+196kiGrJAlIaUUpRoFU3LA2gWR0DCdXBxR2r5dX2UKGgGaAloD0MIPITx07w8s0CUhpRSlGgVTegDaBZHQMJ5+nWrfch1fZQoaAZoCWgPQwgNUvAUqgyzQJSGlFKUaBVN6ANoFkdAwn6Aj2SMcnV9lChoBmgJaA9DCD+Ne/NjbrRAlIaUUpRoFU3oA2gWR0DCgv8M/hVEdX2UKGgGaAloD0MIP8kdNkkiqUCUhpRSlGgVTYYCaBZHQMKF4pI1+Ap1fZQoaAZoCWgPQwg7xapByEKpQJSGlFKUaBVNcQJoFkdAwoipKwIMSnV9lChoBmgJaA9DCMkgdxGWdrRAlIaUUpRoFU3oA2gWR0DCjRmICU5ddX2UKGgGaAloD0MItwpioGvLRUCUhpRSlGgVSxxoFkdAwo055TIeYHV9lChoBmgJaA9DCMHj27tW9bNAlIaUUpRoFU3oA2gWR0DCkbwg5imVdX2UKGgGaAloD0MITny1o3Crs0CUhpRSlGgVTegDaBZHQMKWNYU34sV1fZQoaAZoCWgPQwgAAAAAAL54QJSGlFKUaBVLWWgWR0DClpqRfWtmdX2UKGgGaAloD0MIgV8jSZjFs0CUhpRSlGgVTegDaBZHQMKgg6RQrMF1fZQoaAZoCWgPQwiufmyS3yGwQJSGlFKUaBVNRQNoFkdAwqQ8D7qIJ3V9lChoBmgJaA9DCJ2AJsI2rKBAlIaUUpRoFU25AWgWR0DCpji1G9YfdX2UKGgGaAloD0MIIsSVs3f6k0CUhpRSlGgVTegDaBZHQMKqwWw/xDt1fZQoaAZoCWgPQwjjw+xl2yqzQJSGlFKUaBVN6ANoFkdAwq9DWoWHlHV9lChoBmgJaA9DCLHdPUDDlrNAlIaUUpRoFU3oA2gWR0DCs71yzXz2dX2UKGgGaAloD0MIwopTrWHvskCUhpRSlGgVTegDaBZHQMK4QVdgOSZ1fZQoaAZoCWgPQwhgWWlSmpOaQJSGlFKUaBVN6ANoFkdAwrzLR4QjEHV9lChoBmgJaA9DCKYmwRtubrJAlIaUUpRoFU3oA2gWR0DCwVERnOB2dX2UKGgGaAloD0MIcCh8tn4LsUCUhpRSlGgVTWIDaBZHQMLFNhRhttR1fZQoaAZoCWgPQwhmMbH5GAiWQJSGlFKUaBVNQgFoFkdAwsaprLQokXV9lChoBmgJaA9DCMTpJFsdGpNAlIaUUpRoFUv8aBZHQMLHytOEdvN1fZQoaAZoCWgPQwgGLSRg9GVgQJSGlFKUaBVLLGgWR0DCx/ynm7rcdX2UKGgGaAloD0MIwsJJmjsItECUhpRSlGgVTegDaBZHQMLRE6Ieo1l1fZQoaAZoCWgPQwioABjPEMWgQJSGlFKUaBVNwgFoFkdAwtMal0o0AXV9lChoBmgJaA9DCBr35jdsWI9AlIaUUpRoFUvZaBZHQMLUFjesPrh1fZQoaAZoCWgPQwjn4JnQ9C6bQJSGlFKUaBVN6ANoFkdAwtimYv38GnV9lChoBmgJaA9DCE6Zm2+krLJAlIaUUpRoFU3oA2gWR0DC3SVPSDywdX2UKGgGaAloD0MImPbN/fWZqUCUhpRSlGgVTYgCaBZHQMLgCqRMewN1fZQoaAZoCWgPQwjV6qur4niKQJSGlFKUaBVLxGgWR0DC4Oj7IkqudX2UKGgGaAloD0MIpI6Oq23oskCUhpRSlGgVTegDaBZHQMLlZYC6pYN1fZQoaAZoCWgPQwjaO6OttpizQJSGlFKUaBVN6ANoFkdAwunngRbr1XV9lChoBmgJaA9DCLZI2o3mYq9AlIaUUpRoFU0DA2gWR0DC7VfrUsnRdX2UKGgGaAloD0MIZTTyeUX9mkCUhpRSlGgVTWkBaBZHQMLu+GKyfL91fZQoaAZoCWgPQwh7pMFtOcC0QJSGlFKUaBVN6ANoFkdAwvN3XLeQ+3V9lChoBmgJaA9DCP6d7dGTOqBAlIaUUpRoFU3BAWgWR0DC9YLSsr/bdX2UKGgGaAloD0MIrwW9N8a3s0CUhpRSlGgVTegDaBZHQML6CjjrAxl1fZQoaAZoCWgPQwi8BKc+cFGJQJSGlFKUaBVN6ANoFkdAwwPz3WWhRXV9lChoBmgJaA9DCLG/7J5cK6ZAlIaUUpRoFU3oA2gWR0DDCGsqx1PndX2UKGgGaAloD0MIf2d79O5RrkCUhpRSlGgVTegDaBZHQMMM5w2VE/l1fZQoaAZoCWgPQwjS4/c2LdywQJSGlFKUaBVNcQNoFkdAwxDV9BKL9HV9lChoBmgJaA9DCBWpMLaQ+ZlAlIaUUpRoFU13AWgWR0DDEn94mkWRdX2UKGgGaAloD0MIJhk5C69us0CUhpRSlGgVTegDaBZHQMMXB30PH1h1fZQoaAZoCWgPQwhBSBYw/e+xQJSGlFKUaBVNcANoFkdAwxsEHC4z8HV9lChoBmgJaA9DCL7ArFCQOrFAlIaUUpRoFU1kA2gWR0DDHud1SwW4dX2UKGgGaAloD0MI19tmKriBs0CUhpRSlGgVTegDaBZHQMMjWiZWq951fZQoaAZoCWgPQwi8CFOU+560QJSGlFKUaBVN6ANoFkdAwyfHuJk5InV9lChoBmgJaA9DCDgR/drSkKlAlIaUUpRoFU20AmgWR0DDKt3ReC04dX2UKGgGaAloD0MIVIzzNwFek0CUhpRSlGgVTQ8BaBZHQMMsFYW1twd1ZS4="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 990000,
84
+ "buffer_size": 1,
85
+ "batch_size": 256,
86
+ "learning_starts": 10000,
87
+ "tau": 0.005,
88
+ "gamma": 0.99,
89
+ "gradient_steps": 1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fa67900ab90>",
97
+ "add": "<function ReplayBuffer.add at 0x7fa67900ac20>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7fa678b717a0>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fa678b71830>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc_data object at 0x7fa6790615d0>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "target_entropy": -8.0,
110
+ "ent_coef": "auto",
111
+ "target_update_interval": 1,
112
+ "top_quantiles_to_drop_per_net": 2,
113
+ "remove_time_limit_termination": false
114
+ }
tqc-Ant-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80da188fbdb9367a7f2dd9d7605e8ec80cd9bc87654fdb9ee475d7a7d2ba11e3
3
+ size 1255
tqc-Ant-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec3174c2c138aa3bf380e07050c809aa7ac7e06176d62729262981b4030bedd1
3
+ size 2052101
tqc-Ant-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c343cf7ae95983734dfd2f42c300aef8df43b2201cb755373d40bf79c6a2ad0
3
+ size 747
tqc-Ant-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3745e71625fd7e72d0aeb2f4561e5110167347800ba60709ffde4da34bae7036
3
+ size 87673