araffin commited on
Commit
e9d7b07
·
1 Parent(s): a27dc06

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - HalfCheetahBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2821.04 +/- 20.12
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: HalfCheetahBulletEnv-v0
20
+ type: HalfCheetahBulletEnv-v0
21
+ ---
22
+
23
+ # **TD3** Agent playing **HalfCheetahBulletEnv-v0**
24
+ This is a trained model of a **TD3** agent playing **HalfCheetahBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo td3 --env HalfCheetahBulletEnv-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo td3 --env HalfCheetahBulletEnv-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo td3 --env HalfCheetahBulletEnv-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo td3 --env HalfCheetahBulletEnv-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('buffer_size', 200000),
54
+ ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
55
+ ('gamma', 0.98),
56
+ ('gradient_steps', -1),
57
+ ('learning_rate', 0.001),
58
+ ('learning_starts', 10000),
59
+ ('n_timesteps', 1000000.0),
60
+ ('noise_std', 0.1),
61
+ ('noise_type', 'normal'),
62
+ ('policy', 'MlpPolicy'),
63
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
64
+ ('train_freq', [1, 'episode']),
65
+ ('normalize', False)])
66
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - env
5
+ - HalfCheetahBulletEnv-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 3430695331
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - env_wrapper
5
+ - sb3_contrib.common.wrappers.TimeFeatureWrapper
6
+ - - gamma
7
+ - 0.98
8
+ - - gradient_steps
9
+ - -1
10
+ - - learning_rate
11
+ - 0.001
12
+ - - learning_starts
13
+ - 10000
14
+ - - n_timesteps
15
+ - 1000000.0
16
+ - - noise_std
17
+ - 0.1
18
+ - - noise_type
19
+ - normal
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[400, 300])
24
+ - - train_freq
25
+ - - 1
26
+ - episode
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19fe8da4485d716dc1d464a13710908d517c05042017d59fbaa51c548eee4248
3
+ size 960073
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2821.0361737, "std_reward": 20.12446991254324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:08:45.593481"}
td3-HalfCheetahBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b96c389b7c227e331a85e44fb677339cbef66229f65645430c758f7ff317087
3
+ size 6469880
td3-HalfCheetahBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
td3-HalfCheetahBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b86fcb5cfa7de90c2aaa0fbc05b97923bce0a4d9aadd692c7095b2f80fd0a9
3
+ size 1069761
td3-HalfCheetahBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffc83222e1d3de9f16c80fcf1bc21a359573f4922c0c322c9e235316b343ec1d
3
+ size 2153629
td3-HalfCheetahBulletEnv-v0/data ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7f08afd4d170>",
8
+ "_build": "<function TD3Policy._build at 0x7f08afd4d200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f08afd4d290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7f08afd4d320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7f08afd4d3b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7f08afd4d440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7f08afd4d4d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f08afd4d560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7f08afd4a1e0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ]
24
+ },
25
+ "observation_space": {
26
+ ":type:": "<class 'gym.spaces.box.Box'>",
27
+ ":serialized:": "gASVhwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxuFlGgLiUNsAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAAAAlHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsbhZRoC4lDbAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLG4WUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxuFlGgpiUMbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxuFlHViLg==",
28
+ "dtype": "float32",
29
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
30
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf 1.]",
31
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False True]",
32
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False True]",
33
+ "_np_random": null,
34
+ "_shape": [
35
+ 27
36
+ ]
37
+ },
38
+ "action_space": {
39
+ ":type:": "<class 'gym.spaces.box.Box'>",
40
+ ":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
41
+ "dtype": "float32",
42
+ "low": "[-1. -1. -1. -1. -1. -1.]",
43
+ "high": "[1. 1. 1. 1. 1. 1.]",
44
+ "bounded_below": "[ True True True True True True]",
45
+ "bounded_above": "[ True True True True True True]",
46
+ "_np_random": "RandomState(MT19937)",
47
+ "_shape": [
48
+ 6
49
+ ]
50
+ },
51
+ "n_envs": 1,
52
+ "num_timesteps": 1000000,
53
+ "_total_timesteps": 1000000,
54
+ "_num_timesteps_at_start": 0,
55
+ "seed": 0,
56
+ "action_noise": {
57
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
58
+ ":serialized:": "gASVVAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijAZfc2lnbWGUaAhoC0sAhZRoDYeUUpQoSwFLBoWUaBWJQzCamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+UdJRidWIu",
59
+ "_mu": "[0. 0. 0. 0. 0. 0.]",
60
+ "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
61
+ },
62
+ "start_time": 1614621306.1197495,
63
+ "learning_rate": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
66
+ },
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
71
+ },
72
+ "_last_obs": null,
73
+ "_last_episode_starts": null,
74
+ "_last_original_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gASV9gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLG4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNs7FCbvgAAAAAAAIA/kfc2PwAAAACMGCy8AAAAgPXqQj87yXm/mcU0PiF8Sr9mXt89cQAdPv+PhT5pJ18/zaf0PRpjWD+U4Je9oCKWPpmOEL8AAIA/AAAAAAAAAAAAAIA/AAAAAAAAAABvEoM6lHSUYi4="
77
+ },
78
+ "_episode_num": 1000,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.0,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKRWbJK8L8eMAWyUTegDjAF0lEdAvLcgHNX5nHV9lChoBkdApAEtHQQcxWgHTegDaAhHQLy+KI3BHkN1fZQoaAZHQKPys052hZhoB03oA2gIR0C8xS+nIhhZdX2UKGgGR0Cj42NMfzSUaAdN6ANoCEdAvMw2yiVSoHV9lChoBkdApHPlBIFvAGgHTegDaAhHQLzTP4ecQRR1fZQoaAZHQKPxcwztTk1oB03oA2gIR0C82kcbzbvgdX2UKGgGR0CkP6TOPeYVaAdN6ANoCEdAvOFMgdOqN3V9lChoBkdApAj+Y0EX+GgHTegDaAhHQLzoUWvr4WV1fZQoaAZHQKMdlhMJyABoB03oA2gIR0C871aZH/cWdX2UKGgGR0CkLoxXOnl5aAdN6ANoCEdAvPZhC6YmcHV9lChoBkdApGXbt7a7E2gHTegDaAhHQL0I+WVeKKp1fZQoaAZHQKRAMKWLP2RoB03oA2gIR0C9EA4jOcDsdX2UKGgGR0CkN8ywwCbMaAdN6ANoCEdAvRck57w8XHV9lChoBkdApEljSXt0FWgHTegDaAhHQL0eOe4kNWl1fZQoaAZHQKNw4hzNliBoB03oA2gIR0C9JU4QFs55dX2UKGgGR0Ckb/h+vyLAaAdN6ANoCEdAvSxcYNy5qnV9lChoBkdApD8TzK9wm2gHTegDaAhHQL0zY58Sf191fZQoaAZHQKRs0vRJEploB03oA2gIR0C9Omo+bExZdX2UKGgGR0Ckmkda2WpqaAdN6ANoCEdAvUFz67/XG3V9lChoBkdApEpEqhDgImgHTegDaAhHQL1IfMGorFx1fZQoaAZHQKRCZv3JxNtoB03oA2gIR0C9WvHJDE3sdX2UKGgGR0Cj+ZvpQk5ZaAdN6ANoCEdAvWH7DCP6sXV9lChoBkdApCqNV5rxiGgHTegDaAhHQL1pBLg4wRJ1fZQoaAZHQKSVjkn1FphoB03oA2gIR0C9cA39itq6dX2UKGgGR0Cj4desxO+JaAdN6ANoCEdAvXcUoCuEEnV9lChoBkdApCqRNATqS2gHTegDaAhHQL1+HA80UGp1fZQoaAZHQKQHL1AZ88doB03oA2gIR0C9hSPoicG1dX2UKGgGR0CkcKIkzGgjaAdN6ANoCEdAvYw6yUs4DXV9lChoBkdApGtttj0+T2gHTegDaAhHQL2TUG5MDfZ1fZQoaAZHQKTJpbYbsGBoB03oA2gIR0C9mmUYj0L/dX2UKGgGR0Ckkh95Y5ktaAdN6ANoCEdAva0cAAAAAHV9lChoBkdApHOFtoBaLWgHTegDaAhHQL20MszEaVF1fZQoaAZHQKSWY+aBqbloB03oA2gIR0C9u0tALRa5dX2UKGgGR0CkTf7DMvAXaAdN6ANoCEdAvcJTncL0BnV9lChoBkdAo/C43T/hl2gHTegDaAhHQL3JWpnHvMN1fZQoaAZHQKRaG1dgOSZoB03oA2gIR0C9z9rnTy8SdX2UKGgGR0CkWkf1YhdMaAdN6ANoCEdAvdbjGecx03V9lChoBkdAot77Ck43m2gHTegDaAhHQL3d6xM36yl1fZQoaAZHQKRZLiH6/ItoB03oA2gIR0C95PDtLL6ldX2UKGgGR0CkLSx0U47zaAdN6ANoCEdAvev45GSZB3V9lChoBkdApDgfVd5Y5mgHTegDaAhHQL3+R+7Dl5p1fZQoaAZHQKRtRLpzLfVoB03oA2gIR0C+BVHHBDXwdX2UKGgGR0CkkfSJsO5KaAdN6ANoCEdAvgxZqfvnbXV9lChoBkdApBMSoESuhmgHTegDaAhHQL4TZW/rSmZ1fZQoaAZHQKP2/RxcVxloB03oA2gIR0C+GnAAEMb4dX2UKGgGR0CkBfbY9Pk8aAdN6ANoCEdAviF8yfthNXV9lChoBkdApHe+9Jz1b2gHTegDaAhHQL4oj7rcCYF1fZQoaAZHQKOsI6CDmKZoB03oA2gIR0C+L6ZuAI6bdX2UKGgGR0CkB/v/JeVtaAdN6ANoCEdAvjbAxTKkmHV9lChoBkdApBnS+De0omgHTegDaAhHQL491jpLVWl1fZQoaAZHQKQeBhJAdGRoB03oA2gIR0C+UG5kXk5qdX2UKGgGR0CkTWHm7rcCaAdN6ANoCEdAvld4wIt16nV9lChoBkdApD+yaNMoMWgHTegDaAhHQL5ef5hz/6x1fZQoaAZHQKRda22oegdoB03oA2gIR0C+ZYiYb83udX2UKGgGR0CkpPBybQTmaAdN6ANoCEdAvmyQ3kxREXV9lChoBkdApJ9XzYmLL2gHTegDaAhHQL5znBUrCnB1fZQoaAZHQKP+3CNS619oB03oA2gIR0C+eqNfsu3+dX2UKGgGR0CkuV37+DODaAdN6ANoCEdAvoGrxgAp8XV9lChoBkdApD8UYl6Z6WgHTegDaAhHQL6IsbmU4aR1fZQoaAZHQKR8/3cpLEloB03oA2gIR0C+j7o0l7dBdX2UKGgGR0CkKpsPatcOaAdN6ANoCEdAvqIlMcp9Z3V9lChoBkdApLJQ3gk1M2gHTegDaAhHQL6pKiVSn+B1fZQoaAZHQKPQ4TB68g9oB03oA2gIR0C+sDRFNL13dX2UKGgGR0CkiUDR+jM3aAdN6ANoCEdAvrdLqAz55HV9lChoBkdApBbTLjghr2gHTegDaAhHQL6+YgDifg91fZQoaAZHQKRCzO8CgbpoB03oA2gIR0C+xXVU+9rXdX2UKGgGR0Ck4VsQmNR4aAdN6ANoCEdAvsyK79Q40nV9lChoBkdApKBAWxhUi2gHTegDaAhHQL7ToS619fF1fZQoaAZHQKSXSAmReTpoB03oA2gIR0C+2rNPtUn5dX2UKGgGR0CkSUtqgyuZaAdN6ANoCEdAvuHJ8neBQXV9lChoBkdApNuRRGc4HWgHTegDaAhHQL70KY6nzhB1fZQoaAZHQKRtZPYWcjJoB03oA2gIR0C++zJ0CA+ZdX2UKGgGR0CkKCMkyDZlaAdN6ANoCEdAvwI4m9g4O3V9lChoBkdAo6SZV4oqkWgHTegDaAhHQL8JQa7EpAl1fZQoaAZHQKSD+0JF9a5oB03oA2gIR0C/EEow/PgOdX2UKGgGR0CkiOFIEr5JaAdN6ANoCEdAvxdRYvFm4HV9lChoBkdApGovnuAqeGgHTegDaAhHQL8eWEV32VV1fZQoaAZHQKQ9BpfQa75oB03oA2gIR0C/JWIO6NEPdX2UKGgGR0Cj9fV+Zw4saAdN6ANoCEdAvyxrECNjsnV9lChoBkdApOOtMZgogGgHTegDaAhHQL8zcwevIOp1fZQoaAZHQKSO4n0Cih5oB03oA2gIR0C/Rd27jDKpdX2UKGgGR0Ck1od2ovSMaAdN6ANoCEdAv0zs9r4333V9lChoBkdApLZor8R+SmgHTegDaAhHQL9T/yylenh1fZQoaAZHQKSDJi9Zid9oB03oA2gIR0C/WxYd+5OKdX2UKGgGR0CkkbNLcsUZaAdN6ANoCEdAv2IuMQ2/BXV9lChoBkdApBkXOW0JGGgHTegDaAhHQL9pP8VpKz11fZQoaAZHQKRnIIznA7BoB03oA2gIR0C/cFZcxCY1dX2UKGgGR0Ckkn1UuL75aAdN6ANoCEdAv3dtiqhlDnV9lChoBkdApM5acZtNz2gHTegDaAhHQL9+gk+X7ch1fZQoaAZHQKQDFXBguyxoB03oA2gIR0C/hYzqfOD8dX2UKGgGR0Ckkjt5dGAkaAdN6ANoCEdAv5fVpUPxx3V9lChoBkdApJa2Ts6aLGgHTegDaAhHQL+e3SbYsd11fZQoaAZHQKR0Rr433pRoB03oA2gIR0C/peZFocrBdX2UKGgGR0CkHUPq1PWQaAdN6ANoCEdAv6zuiGnGbXV9lChoBkdApNV1oHs1K2gHTegDaAhHQL+z9qJuVHF1fZQoaAZHQKSgn17IDHRoB03oA2gIR0C/uv9ld1MedX2UKGgGR0Cjh2hZpztDaAdN6ANoCEdAv8IG5wwTNHV9lChoBkdApLKK7K7qZGgHTegDaAhHQL/JEFCb+cZ1fZQoaAZHQKRV8u6ErXloB03oA2gIR0C/0Be4smOVdX2UKGgGR0CkyTpJXhfjaAdN6ANoCEdAv9cg3l0YCXVlLg=="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 990000,
91
+ "buffer_size": 1,
92
+ "batch_size": 100,
93
+ "learning_starts": 10000,
94
+ "tau": 0.005,
95
+ "gamma": 0.98,
96
+ "gradient_steps": -1,
97
+ "optimize_memory_usage": false,
98
+ "replay_buffer_class": {
99
+ ":type:": "<class 'abc.ABCMeta'>",
100
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
101
+ "__module__": "stable_baselines3.common.buffers",
102
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
103
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f08b01cab90>",
104
+ "add": "<function ReplayBuffer.add at 0x7f08b01cac20>",
105
+ "sample": "<function ReplayBuffer.sample at 0x7f08afd2f7a0>",
106
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f08afd2f830>",
107
+ "__abstractmethods__": "frozenset()",
108
+ "_abc_impl": "<_abc_data object at 0x7f08b02215d0>"
109
+ },
110
+ "replay_buffer_kwargs": {},
111
+ "train_freq": {
112
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
113
+ ":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
114
+ },
115
+ "use_sde_at_warmup": false,
116
+ "policy_delay": 2,
117
+ "target_noise_clip": 0.5,
118
+ "target_policy_noise": 0.2,
119
+ "_last_dones": {
120
+ ":type:": "<class 'numpy.ndarray'>",
121
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
122
+ },
123
+ "remove_time_limit_termination": false
124
+ }
td3-HalfCheetahBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5334364b18e5ba1df864e1b13cd1a0a18da6e8bf0b44acb74899d57d30193ec2
3
+ size 3225721
td3-HalfCheetahBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-HalfCheetahBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b03761722477e608506076f881264a33574354408a54392126bc1e9c1631ea4
3
+ size 47336