araffin commited on
Commit
9fbe055
·
1 Parent(s): b4a6926

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -203.15 +/- 125.77
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Pendulum-v1
20
+ type: Pendulum-v1
21
+ ---
22
+
23
+ # **A2C** Agent playing **Pendulum-v1**
24
+ This is a trained model of a **A2C** agent playing **Pendulum-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo a2c --env Pendulum-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo a2c --env Pendulum-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo a2c --env Pendulum-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo a2c --env Pendulum-v1 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('ent_coef', 0.0),
54
+ ('gae_lambda', 0.9),
55
+ ('gamma', 0.99),
56
+ ('learning_rate', 'lin_7e-4'),
57
+ ('max_grad_norm', 0.5),
58
+ ('n_envs', 8),
59
+ ('n_steps', 8),
60
+ ('n_timesteps', 1000000.0),
61
+ ('normalize', True),
62
+ ('normalize_advantage', False),
63
+ ('policy', 'MlpPolicy'),
64
+ ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
65
+ ('use_rms_prop', True),
66
+ ('use_sde', True),
67
+ ('vf_coef', 0.4),
68
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
69
+ ```
a2c-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d18cb1a36e537b9d37492dcbe57f11e3ca03bfa4e3cc70f854aa75ac0c5b5cb5
3
+ size 100564
a2c-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
a2c-Pendulum-v1/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb353f3d950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb353f3d9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb353f3da70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb353f3db00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb353f3db90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb353f3dc20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb353f3dcb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb353f3dd40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb353f3ddd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb353f3de60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb353f3def0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb353f8f840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAADBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AAAAQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwOFlHViLg==",
37
+ "dtype": "float32",
38
+ "low": "[-1. -1. -8.]",
39
+ "high": "[1. 1. 8.]",
40
+ "bounded_below": "[ True True True]",
41
+ "bounded_above": "[ True True True]",
42
+ "_np_random": null,
43
+ "_shape": [
44
+ 3
45
+ ]
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAAAAwJR0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAABAlHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
50
+ "dtype": "float32",
51
+ "low": "[-2.]",
52
+ "high": "[2.]",
53
+ "bounded_below": "[ True]",
54
+ "bounded_above": "[ True]",
55
+ "_np_random": "RandomState(MT19937)",
56
+ "_shape": [
57
+ 1
58
+ ]
59
+ },
60
+ "n_envs": 8,
61
+ "num_timesteps": 1000000,
62
+ "_total_timesteps": 1000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": 0,
65
+ "action_noise": null,
66
+ "start_time": 1614619328.9999344,
67
+ "learning_rate": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
70
+ },
71
+ "tensorboard_log": null,
72
+ "lr_schedule": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
75
+ },
76
+ "_last_obs": null,
77
+ "_last_episode_starts": null,
78
+ "_last_original_obs": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gASV6gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwhLA4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNgM2YnvxyvQb8DsdK+1KNmv5gu3j4yU1q/CPPhPiC5ZT/GOmg/x5/MPo6qar9vE3S/bCMgv6W6Rz+v3t49wrdZv4WqBj/EyAe/AbYfPy4SSD/L2fG+euMyPjcQfL+DUBa/lHSUYi4="
81
+ },
82
+ "_episode_num": 0,
83
+ "use_sde": true,
84
+ "sde_sample_freq": -1,
85
+ "_current_progress_remaining": 0.0,
86
+ "ep_info_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWVAYlGk01L+UhpRSlIwBbJRLyIwBdJRHQHyJr2g39751fZQoaAZoCWgPQwhF9dbAVjhewJSGlFKUaBVLyGgWR0B8iXcKw6hhdX2UKGgGaAloD0MIiNnLttMoXsCUhpRSlGgVS8hoFkdAfIlwDeTFEXV9lChoBmgJaA9DCD9XW7E/e2zAlIaUUpRoFUvIaBZHQHyJaf4AS391fZQoaAZoCWgPQwhQjgJEwb1ewJSGlFKUaBVLyGgWR0B8kWlMyrPudX2UKGgGaAloD0MIY3st6L0tXcCUhpRSlGgVS8hoFkdAfJFjghr303V9lChoBmgJaA9DCCy8y0V8sl7AlIaUUpRoFUvIaBZHQHyRXiBGx2V1fZQoaAZoCWgPQwi5/l2fOe9fwJSGlFKUaBVLyGgWR0B8kVghKUV0dX2UKGgGaAloD0MIou4DkNrE2b+UhpRSlGgVS8hoFkdAfJFSidrftXV9lChoBmgJaA9DCFx0stR60l3AlIaUUpRoFUvIaBZHQHyRGi1y/9J1fZQoaAZoCWgPQwgc7E0MyUxfwJSGlFKUaBVLyGgWR0B8kRM0xdpqdX2UKGgGaAloD0MIkx0bgXgBc8CUhpRSlGgVS8hoFkdAfJENJOFg2XV9lChoBmgJaA9DCCi37XvU/17AlIaUUpRoFUvIaBZHQHyZEKeCkGl1fZQoaAZoCWgPQwh80/TZAfcCwJSGlFKUaBVLyGgWR0B8mQrtmcvvdX2UKGgGaAloD0MI5zV2iWrhdcCUhpRSlGgVS8hoFkdAfJkFi8WbgHV9lChoBmgJaA9DCJkOnZ532WrAlIaUUpRoFUvIaBZHQHyY/47A+IN1fZQoaAZoCWgPQwiXOsjrwWNewJSGlFKUaBVLyGgWR0B8mPn5i3G5dX2UKGgGaAloD0MIr+qsFljba8CUhpRSlGgVS8hoFkdAfJjBnBciW3V9lChoBmgJaA9DCOeoo+Pq8XHAlIaUUpRoFUvIaBZHQHyYup84Pwx1fZQoaAZoCWgPQwgqHEEqxXNzwJSGlFKUaBVLyGgWR0B8mLSRbKRudX2UKGgGaAloD0MIhugQOJJtbsCUhpRSlGgVS8hoFkdAfKDEfDDTB3V9lChoBmgJaA9DCEtzK4TVWNO/lIaUUpRoFUvIaBZHQHygvsqril11fZQoaAZoCWgPQwiP+1brhK52wJSGlFKUaBVLyGgWR0B8oLltCRfXdX2UKGgGaAloD0MINbIrLYPngcCUhpRSlGgVS8hoFkdAfKCzdUKiPHV9lChoBmgJaA9DCDf/rzqyt3bAlIaUUpRoFUvIaBZHQHygreANG3F1fZQoaAZoCWgPQwhN2H4yxlJewJSGlFKUaBVLyGgWR0B8oHWFvhqCdX2UKGgGaAloD0MIeTpXlBJiAMCUhpRSlGgVS8hoFkdAfKBujRD1G3V9lChoBmgJaA9DCFOwxtl0BPi/lIaUUpRoFUvIaBZHQHygaH9FWn11fZQoaAZoCWgPQwjx9bUuNflswJSGlFKUaBVLyGgWR0B8qHS/j81odX2UKGgGaAloD0MI1o9N8iN+57+UhpRSlGgVS8hoFkdAfKhu+yquKXV9lChoBmgJaA9DCNGTMqlhc33AlIaUUpRoFUvIaBZHQHyoaZc9nsd1fZQoaAZoCWgPQwiC597DJUdswJSGlFKUaBVLyGgWR0B8qGOZLIxQdX2UKGgGaAloD0MINpTai2g70L+UhpRSlGgVS8hoFkdAfKhd/8VHnXV9lChoBmgJaA9DCGVwlLz6bXTAlIaUUpRoFUvIaBZHQHyoJaFEiMZ1fZQoaAZoCWgPQwha8Q2Fz6lewJSGlFKUaBVLyGgWR0B8qB6mfoRqdX2UKGgGaAloD0MIxf8dUaHaXcCUhpRSlGgVS8hoFkdAfKgYlpoK2XV9lChoBmgJaA9DCC3MQjun81zAlIaUUpRoFUvIaBZHQHywJgXuVop1fZQoaAZoCWgPQwh31m670FzXv5SGlFKUaBVLyGgWR0B8sCBEroW6dX2UKGgGaAloD0MIdJmaBG8TXsCUhpRSlGgVS8hoFkdAfLAa4MF2V3V9lChoBmgJaA9DCJaTUPpC4F/AlIaUUpRoFUvIaBZHQHywFOj7AL11fZQoaAZoCWgPQwgf+BiseC92wJSGlFKUaBVLyGgWR0B8sA9ZA6dUdX2UKGgGaAloD0MI2EenrvxobcCUhpRSlGgVS8hoFkdAfK/W/rSmZXV9lChoBmgJaA9DCObOTDCca9u/lIaUUpRoFUvIaBZHQHyv0APuogp1fZQoaAZoCWgPQwjMttPWyE9ywJSGlFKUaBVLyGgWR0B8r8n5SFXadX2UKGgGaAloD0MIWDz1SIOLeMCUhpRSlGgVS8hoFkdAfNGyBkI5YHV9lChoBmgJaA9DCODZHr3hgF3AlIaUUpRoFUvIaBZHQHzRrDMvAXV1fZQoaAZoCWgPQwikb9I0KPVdwJSGlFKUaBVLyGgWR0B80abPQfITdX2UKGgGaAloD0MIjSWsjbFqbcCUhpRSlGgVS8hoFkdAfNGg1FYuCnV9lChoBmgJaA9DCL+c2a7QB+2/lIaUUpRoFUvIaBZHQHzRmzv7WNF1fZQoaAZoCWgPQwgP1CmP7q90wJSGlFKUaBVLyGgWR0B80WLsKLKndX2UKGgGaAloD0MIxedOsP+fXcCUhpRSlGgVS8hoFkdAfNFb9If8uXV9lChoBmgJaA9DCP29FB40Xl7AlIaUUpRoFUvIaBZHQHzRVefI0ZZ1fZQoaAZoCWgPQwiHokCfSOF0wJSGlFKUaBVLyGgWR0B82VrBTGYKdX2UKGgGaAloD0MI8MLWbOUeXsCUhpRSlGgVS8hoFkdAfNlU8V58jXV9lChoBmgJaA9DCGjmyTUFm17AlIaUUpRoFUvIaBZHQHzZT5GjKxN1fZQoaAZoCWgPQwgz/n3GhWVewJSGlFKUaBVLyGgWR0B82UmTkhicdX2UKGgGaAloD0MIJuFCHkHCbMCUhpRSlGgVS8hoFkdAfNlD/VAiV3V9lChoBmgJaA9DCGH/dW7ayF3AlIaUUpRoFUvIaBZHQHzZC6H0se51fZQoaAZoCWgPQwhffNEeLxxewJSGlFKUaBVLyGgWR0B82QSoOx0NdX2UKGgGaAloD0MIQDBHj1/WbcCUhpRSlGgVS8hoFkdAfNj+nIhhY3V9lChoBmgJaA9DCAouVtRgOgPAlIaUUpRoFUvIaBZHQHzhAwsXizd1fZQoaAZoCWgPQwjKcDyfAXXpv5SGlFKUaBVLyGgWR0B84P04BFNMdX2UKGgGaAloD0MImN2ThwUSesCUhpRSlGgVS8hoFkdAfOD30PH1e3V9lChoBmgJaA9DCCrIz0auNV7AlIaUUpRoFUvIaBZHQHzg8dLg4wR1fZQoaAZoCWgPQwio4sYt5phdwJSGlFKUaBVLyGgWR0B84Ow6hg3MdX2UKGgGaAloD0MI06HT8279XcCUhpRSlGgVS8hoFkdAfOCz3h4t6HV9lChoBmgJaA9DCF5HHLKBSl3AlIaUUpRoFUvIaBZHQHzgrONYKY11fZQoaAZoCWgPQwiY+KOoM5hewJSGlFKUaBVLyGgWR0B84KbUgB91dX2UKGgGaAloD0MIXtpwWNqYdsCUhpRSlGgVS8hoFkdAfOioexOclXV9lChoBmgJaA9DCHe9NEWA8m7AlIaUUpRoFUvIaBZHQHzooq0+kgx1fZQoaAZoCWgPQwjt8q0P6/5dwJSGlFKUaBVLyGgWR0B86J1HOKO1dX2UKGgGaAloD0MIUz9vKlI9bcCUhpRSlGgVS8hoFkdAfOiXSSeRP3V9lChoBmgJaA9DCA3H8xlQR3XAlIaUUpRoFUvIaBZHQHzokbDMvAZ1fZQoaAZoCWgPQwiDL0ymCkJdwJSGlFKUaBVLyGgWR0B86FlTWGypdX2UKGgGaAloD0MIiL67lSVkXsCUhpRSlGgVS8hoFkdAfOhSWZ7Xx3V9lChoBmgJaA9DCO1FtB0T5nTAlIaUUpRoFUvIaBZHQHzoTEit7rt1fZQoaAZoCWgPQwg4Z0Rpb0pewJSGlFKUaBVLyGgWR0B88ErQPZqVdX2UKGgGaAloD0MI36eq0EALX8CUhpRSlGgVS8hoFkdAfPBFBIFvAHV9lChoBmgJaA9DCHmUSnhCL+y/lIaUUpRoFUvIaBZHQHzwP557gKp1fZQoaAZoCWgPQwiJtfgUwFt3wJSGlFKUaBVLyGgWR0B88DmvGIbgdX2UKGgGaAloD0MIATCeQUP/zL+UhpRSlGgVS8hoFkdAfPA0GNaQm3V9lChoBmgJaA9DCHycacL20/G/lIaUUpRoFUvIaBZHQHzv+76Hj6x1fZQoaAZoCWgPQwjpYz4g0JhcwJSGlFKUaBVLyGgWR0B87/TDwYtQdX2UKGgGaAloD0MIMUW5NH6ZXsCUhpRSlGgVS8hoFkdAfO/ustCiRHV9lChoBmgJaA9DCFBTy9b6Wl3AlIaUUpRoFUvIaBZHQHz38sQNCqp1fZQoaAZoCWgPQwh5PZgUHy1dwJSGlFKUaBVLyGgWR0B89+z/p+tsdX2UKGgGaAloD0MIgzRj0XSJXcCUhpRSlGgVS8hoFkdAfPfnm7rcCnV9lChoBmgJaA9DCH1bsFQXvl3AlIaUUpRoFUvIaBZHQHz34Z/CqId1fZQoaAZoCWgPQwhlUdhF0cldwJSGlFKUaBVLyGgWR0B899wLmZE2dX2UKGgGaAloD0MI0LhwICQuXsCUhpRSlGgVS8hoFkdAfPejsD4gzXV9lChoBmgJaA9DCB7AIr9+t13AlIaUUpRoFUvIaBZHQHz3nLaEi+t1fZQoaAZoCWgPQwiZu5aQj5BrwJSGlFKUaBVLyGgWR0B895as6q82dX2UKGgGaAloD0MIHT1+b5MfdsCUhpRSlGgVS8hoFkdAfP+gFHJ9zHV9lChoBmgJaA9DCPVnP1JEsl3AlIaUUpRoFUvIaBZHQHz/mlQ/HHZ1fZQoaAZoCWgPQwi0A64r5nZrwJSGlFKUaBVLyGgWR0B8/5Tzd1uBdX2UKGgGaAloD0MIP8kdNpGUXMCUhpRSlGgVS8hoFkdAfP+O+ZgG8nV9lChoBmgJaA9DCLtE9dbAKF7AlIaUUpRoFUvIaBZHQHz/iWRigCh1fZQoaAZoCWgPQwgn2lVI+UnHv5SGlFKUaBVLyGgWR0B8/1EJBw+/dX2UKGgGaAloD0MInil0XmO0XcCUhpRSlGgVS8hoFkdAfP9KEWZZ0XV9lChoBmgJaA9DCBNjmX6JUl3AlIaUUpRoFUvIaBZHQHz/RAfMfRx1ZS4="
89
+ },
90
+ "ep_success_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
+ },
94
+ "_n_updates": 15625,
95
+ "n_steps": 8,
96
+ "gamma": 0.99,
97
+ "gae_lambda": 0.9,
98
+ "ent_coef": 0.0,
99
+ "vf_coef": 0.4,
100
+ "max_grad_norm": 0.5,
101
+ "normalize_advantage": false,
102
+ "_last_dones": {
103
+ ":type:": "<class 'numpy.ndarray'>",
104
+ ":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYi4="
105
+ }
106
+ }
a2c-Pendulum-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a0db013af8a756dd5a16bc240092a847724d0edf7025c536bdbe75b026678aa
3
+ size 39742
a2c-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b45e88541906ac2da441d28239c73310ad0984a38b2520cc9ed8b432900b6ff5
3
+ size 40382
a2c-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - env
5
+ - Pendulum-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 4281126362
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - gae_lambda
5
+ - 0.9
6
+ - - gamma
7
+ - 0.99
8
+ - - learning_rate
9
+ - lin_7e-4
10
+ - - max_grad_norm
11
+ - 0.5
12
+ - - n_envs
13
+ - 8
14
+ - - n_steps
15
+ - 8
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - normalize
19
+ - true
20
+ - - normalize_advantage
21
+ - false
22
+ - - policy
23
+ - MlpPolicy
24
+ - - policy_kwargs
25
+ - dict(log_std_init=-2, ortho_init=False)
26
+ - - use_rms_prop
27
+ - true
28
+ - - use_sde
29
+ - true
30
+ - - vf_coef
31
+ - 0.4
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b4bdd58eb079f219e8a1bce258f5edb2e11e55b342716be1755bfe0cf0f4f32
3
+ size 106003
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -203.1537649, "std_reward": 125.76952558911789, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:29:09.099840"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9445f02304144cf57acaa1f5ff0bbe56a54a25021ab51b54a8566659ae3782bd
3
+ size 157023
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a81ea3593663bd953c4cc9e24b8abd644968176148a2e01b29c75dd6e7d02879
3
+ size 4442