--- license: apache-2.0 tags: - generated_from_keras_callback - vision - image-segmentation model-index: - name: mit-b0-finetuned-sidewalk-semantic results: [] datasets: - segments/sidewalk-semantic --- # mit-b0-finetuned-sidewalk-semantic This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2125 - Validation Loss: 0.5151 - Epoch: 49 ## Model description The model was fine-tuned from [this model](https://huggingface.co./nvidia/mit-b0). More information about the model is available [here](https://huggingface.co./docs/transformers/model_doc/segformer). ## Intended uses & limitations This fine-tuned model is just for demonstration purposes. Before using it in production, it should be thoroughly inspected and adjusted if needed. ## Training and evaluation data [`segments/sidewalk-semantic`](https://huggingface.co./datasets/segments/sidewalk-semantic) ## Training procedure More information is available here: [deep-diver/segformer-tf-transformers](https://github.com/deep-diver/segformer-tf-transformers). ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0785 | 1.1753 | 0 | | 1.1312 | 0.8807 | 1 | | 0.9315 | 0.7585 | 2 | | 0.7952 | 0.7261 | 3 | | 0.7273 | 0.6701 | 4 | | 0.6603 | 0.6396 | 5 | | 0.6198 | 0.6238 | 6 | | 0.5958 | 0.5925 | 7 | | 0.5378 | 0.5714 | 8 | | 0.5236 | 0.5786 | 9 | | 0.4960 | 0.5588 | 10 | | 0.4633 | 0.5624 | 11 | | 0.4562 | 0.5450 | 12 | | 0.4167 | 0.5438 | 13 | | 0.4100 | 0.5248 | 14 | | 0.3947 | 0.5354 | 15 | | 0.3867 | 0.5069 | 16 | | 0.3803 | 0.5285 | 17 | | 0.3696 | 0.5318 | 18 | | 0.3386 | 0.5162 | 19 | | 0.3349 | 0.5312 | 20 | | 0.3233 | 0.5304 | 21 | | 0.3328 | 0.5178 | 22 | | 0.3140 | 0.5131 | 23 | | 0.3081 | 0.5049 | 24 | | 0.3046 | 0.5011 | 25 | | 0.3209 | 0.5197 | 26 | | 0.2966 | 0.5151 | 27 | | 0.2829 | 0.5166 | 28 | | 0.2968 | 0.5210 | 29 | | 0.2818 | 0.5300 | 30 | | 0.2739 | 0.5221 | 31 | | 0.2602 | 0.5340 | 32 | | 0.2570 | 0.5124 | 33 | | 0.2557 | 0.5234 | 34 | | 0.2593 | 0.5098 | 35 | | 0.2582 | 0.5329 | 36 | | 0.2439 | 0.5373 | 37 | | 0.2413 | 0.5141 | 38 | | 0.2423 | 0.5210 | 39 | | 0.2340 | 0.5043 | 40 | | 0.2244 | 0.5300 | 41 | | 0.2246 | 0.4978 | 42 | | 0.2270 | 0.5385 | 43 | | 0.2254 | 0.5125 | 44 | | 0.2176 | 0.5510 | 45 | | 0.2194 | 0.5384 | 46 | | 0.2136 | 0.5186 | 47 | | 0.2121 | 0.5356 | 48 | | 0.2125 | 0.5151 | 49 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.8.0 - Datasets 2.3.2 - Tokenizers 0.12.1