Contains the NF4 checkpoints (
transformer
andtext_encoder_2
) ofblack-forest-labs/FLUX.1-Canny-dev
. Please adhere to the original model licensing!
Code
# !pip install -U controlnet_aux
from diffusers import DiffusionPipeline, FluxControlPipeline, FluxTransformer2DModel
import torch
from transformers import T5EncoderModel
from controlnet_aux import CannyDetector
from diffusers.utils import load_image
import fire
def load_pipeline(four_bit=False):
orig_pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
if four_bit:
print("Using four bit.")
transformer = FluxTransformer2DModel.from_pretrained(
"sayakpaul/FLUX.1-Canny-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"sayakpaul/FLUX.1-Canny-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
pipeline = FluxControlPipeline.from_pipe(
orig_pipeline, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16
)
else:
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-Canny-dev",
subfolder="transformer",
revision="refs/pr/1",
torch_dtype=torch.bfloat16,
)
pipeline = FluxControlPipeline.from_pipe(orig_pipeline, transformer=transformer, torch_dtype=torch.bfloat16)
pipeline.enable_model_cpu_offload()
return pipeline
def get_canny(control_image):
processor = CannyDetector()
control_image = processor(
control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024
)
return control_image
def load_conditions():
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png")
control_image = get_canny(control_image)
return prompt, control_image
def main(four_bit: bool = False):
ckpt_id = "sayakpaul/FLUX.1-Canny-dev-nf4"
pipe = load_pipeline(four_bit=four_bit)
prompt, control_image = load_conditions()
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=30.0,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
filename = "output_" + ckpt_id.split("/")[-1].replace(".", "_")
filename += "_4bit" if four_bit else ""
image.save(f"{filename}.png")
if __name__ == "__main__":
fire.Fire(main)
Outputs
Original | NF4 |
---|---|
- Downloads last month
- 0