File size: 6,664 Bytes
a4e18d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377771d
a4e18d0
b6eb0ad
5096f18
b6eb0ad
 
a4e18d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6eb0ad
 
a4e18d0
 
 
b6eb0ad
efff10f
a4e18d0
 
 
5096f18
 
b6eb0ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e18d0
 
 
 
efff10f
377771d
 
a4e18d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
model-index:
- name: bart-large-cnn-finetuned-prompt_generation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-finetuned-prompt_generation

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6474
- Actual score: 0.8766
- Predction score: 0.3367
- Score difference: 0.5399

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Actual score | Predction score | Score difference |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:---------------:|:----------------:|
| No log        | 1.0   | 15   | 3.6226          | 0.8766       | -0.4072         | 1.2838           |
| No log        | 2.0   | 30   | 3.5120          | 0.8766       | -0.2477         | 1.1243           |
| No log        | 3.0   | 45   | 3.3572          | 0.8766       | -0.3233         | 1.1999           |
| No log        | 4.0   | 60   | 3.2592          | 0.8766       | -0.0494         | 0.9260           |
| No log        | 5.0   | 75   | 3.1430          | 0.8766       | -0.3234         | 1.2000           |
| No log        | 6.0   | 90   | 3.0581          | 0.8766       | -0.4732         | 1.3498           |
| No log        | 7.0   | 105  | 2.9988          | 0.8766       | -0.5715         | 1.4481           |
| No log        | 8.0   | 120  | 2.9564          | 0.8766       | -0.6699         | 1.5465           |
| No log        | 9.0   | 135  | 2.9242          | 0.8766       | -0.5505         | 1.4271           |
| No log        | 10.0  | 150  | 2.8969          | 0.8766       | -0.4393         | 1.3159           |
| No log        | 11.0  | 165  | 2.8729          | 0.8766       | -0.4882         | 1.3648           |
| No log        | 12.0  | 180  | 2.8503          | 0.8766       | -0.6554         | 1.5320           |
| No log        | 13.0  | 195  | 2.8308          | 0.8766       | -0.7288         | 1.6054           |
| No log        | 14.0  | 210  | 2.8128          | 0.8766       | -0.7016         | 1.5783           |
| No log        | 15.0  | 225  | 2.7972          | 0.8766       | -0.7900         | 1.6666           |
| No log        | 16.0  | 240  | 2.7832          | 0.8766       | -0.6285         | 1.5052           |
| No log        | 17.0  | 255  | 2.7708          | 0.8766       | -0.5613         | 1.4379           |
| No log        | 18.0  | 270  | 2.7591          | 0.8766       | -0.6125         | 1.4891           |
| No log        | 19.0  | 285  | 2.7481          | 0.8766       | -0.5101         | 1.3868           |
| No log        | 20.0  | 300  | 2.7390          | 0.8766       | -0.4879         | 1.3646           |
| No log        | 21.0  | 315  | 2.7307          | 0.8766       | -0.4345         | 1.3112           |
| No log        | 22.0  | 330  | 2.7229          | 0.8766       | -0.3278         | 1.2044           |
| No log        | 23.0  | 345  | 2.7156          | 0.8766       | -0.3324         | 1.2090           |
| No log        | 24.0  | 360  | 2.7084          | 0.8766       | -0.2899         | 1.1665           |
| No log        | 25.0  | 375  | 2.7019          | 0.8766       | -0.1728         | 1.0494           |
| No log        | 26.0  | 390  | 2.6965          | 0.8766       | -0.2785         | 1.1552           |
| No log        | 27.0  | 405  | 2.6918          | 0.8766       | -0.1926         | 1.0692           |
| No log        | 28.0  | 420  | 2.6872          | 0.8766       | -0.1204         | 0.9970           |
| No log        | 29.0  | 435  | 2.6832          | 0.8766       | -0.0040         | 0.8806           |
| No log        | 30.0  | 450  | 2.6791          | 0.8766       | -0.0742         | 0.9508           |
| No log        | 31.0  | 465  | 2.6751          | 0.8766       | 0.0669          | 0.8097           |
| No log        | 32.0  | 480  | 2.6719          | 0.8766       | -0.0049         | 0.8815           |
| No log        | 33.0  | 495  | 2.6690          | 0.8766       | -0.0196         | 0.8962           |
| 2.6809        | 34.0  | 510  | 2.6663          | 0.8766       | 0.0692          | 0.8074           |
| 2.6809        | 35.0  | 525  | 2.6636          | 0.8766       | 0.0843          | 0.7923           |
| 2.6809        | 36.0  | 540  | 2.6615          | 0.8766       | -0.0330         | 0.9096           |
| 2.6809        | 37.0  | 555  | 2.6594          | 0.8766       | -0.0065         | 0.8831           |
| 2.6809        | 38.0  | 570  | 2.6575          | 0.8766       | 0.2102          | 0.6664           |
| 2.6809        | 39.0  | 585  | 2.6559          | 0.8766       | 0.3005          | 0.5761           |
| 2.6809        | 40.0  | 600  | 2.6541          | 0.8766       | 0.3360          | 0.5406           |
| 2.6809        | 41.0  | 615  | 2.6528          | 0.8766       | 0.2456          | 0.6310           |
| 2.6809        | 42.0  | 630  | 2.6517          | 0.8766       | 0.3399          | 0.5367           |
| 2.6809        | 43.0  | 645  | 2.6509          | 0.8766       | 0.4224          | 0.4542           |
| 2.6809        | 44.0  | 660  | 2.6499          | 0.8766       | 0.4277          | 0.4490           |
| 2.6809        | 45.0  | 675  | 2.6492          | 0.8766       | 0.2815          | 0.5951           |
| 2.6809        | 46.0  | 690  | 2.6485          | 0.8766       | 0.3053          | 0.5714           |
| 2.6809        | 47.0  | 705  | 2.6481          | 0.8766       | 0.2149          | 0.6618           |
| 2.6809        | 48.0  | 720  | 2.6478          | 0.8766       | 0.2285          | 0.6481           |
| 2.6809        | 49.0  | 735  | 2.6475          | 0.8766       | 0.2546          | 0.6220           |
| 2.6809        | 50.0  | 750  | 2.6474          | 0.8766       | 0.3367          | 0.5399           |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1