File size: 6,664 Bytes
a4e18d0 377771d a4e18d0 b6eb0ad 5096f18 b6eb0ad a4e18d0 b6eb0ad a4e18d0 b6eb0ad efff10f a4e18d0 5096f18 b6eb0ad a4e18d0 efff10f 377771d a4e18d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
model-index:
- name: bart-large-cnn-finetuned-prompt_generation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-prompt_generation
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6474
- Actual score: 0.8766
- Predction score: 0.3367
- Score difference: 0.5399
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-07
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Actual score | Predction score | Score difference |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:---------------:|:----------------:|
| No log | 1.0 | 15 | 3.6226 | 0.8766 | -0.4072 | 1.2838 |
| No log | 2.0 | 30 | 3.5120 | 0.8766 | -0.2477 | 1.1243 |
| No log | 3.0 | 45 | 3.3572 | 0.8766 | -0.3233 | 1.1999 |
| No log | 4.0 | 60 | 3.2592 | 0.8766 | -0.0494 | 0.9260 |
| No log | 5.0 | 75 | 3.1430 | 0.8766 | -0.3234 | 1.2000 |
| No log | 6.0 | 90 | 3.0581 | 0.8766 | -0.4732 | 1.3498 |
| No log | 7.0 | 105 | 2.9988 | 0.8766 | -0.5715 | 1.4481 |
| No log | 8.0 | 120 | 2.9564 | 0.8766 | -0.6699 | 1.5465 |
| No log | 9.0 | 135 | 2.9242 | 0.8766 | -0.5505 | 1.4271 |
| No log | 10.0 | 150 | 2.8969 | 0.8766 | -0.4393 | 1.3159 |
| No log | 11.0 | 165 | 2.8729 | 0.8766 | -0.4882 | 1.3648 |
| No log | 12.0 | 180 | 2.8503 | 0.8766 | -0.6554 | 1.5320 |
| No log | 13.0 | 195 | 2.8308 | 0.8766 | -0.7288 | 1.6054 |
| No log | 14.0 | 210 | 2.8128 | 0.8766 | -0.7016 | 1.5783 |
| No log | 15.0 | 225 | 2.7972 | 0.8766 | -0.7900 | 1.6666 |
| No log | 16.0 | 240 | 2.7832 | 0.8766 | -0.6285 | 1.5052 |
| No log | 17.0 | 255 | 2.7708 | 0.8766 | -0.5613 | 1.4379 |
| No log | 18.0 | 270 | 2.7591 | 0.8766 | -0.6125 | 1.4891 |
| No log | 19.0 | 285 | 2.7481 | 0.8766 | -0.5101 | 1.3868 |
| No log | 20.0 | 300 | 2.7390 | 0.8766 | -0.4879 | 1.3646 |
| No log | 21.0 | 315 | 2.7307 | 0.8766 | -0.4345 | 1.3112 |
| No log | 22.0 | 330 | 2.7229 | 0.8766 | -0.3278 | 1.2044 |
| No log | 23.0 | 345 | 2.7156 | 0.8766 | -0.3324 | 1.2090 |
| No log | 24.0 | 360 | 2.7084 | 0.8766 | -0.2899 | 1.1665 |
| No log | 25.0 | 375 | 2.7019 | 0.8766 | -0.1728 | 1.0494 |
| No log | 26.0 | 390 | 2.6965 | 0.8766 | -0.2785 | 1.1552 |
| No log | 27.0 | 405 | 2.6918 | 0.8766 | -0.1926 | 1.0692 |
| No log | 28.0 | 420 | 2.6872 | 0.8766 | -0.1204 | 0.9970 |
| No log | 29.0 | 435 | 2.6832 | 0.8766 | -0.0040 | 0.8806 |
| No log | 30.0 | 450 | 2.6791 | 0.8766 | -0.0742 | 0.9508 |
| No log | 31.0 | 465 | 2.6751 | 0.8766 | 0.0669 | 0.8097 |
| No log | 32.0 | 480 | 2.6719 | 0.8766 | -0.0049 | 0.8815 |
| No log | 33.0 | 495 | 2.6690 | 0.8766 | -0.0196 | 0.8962 |
| 2.6809 | 34.0 | 510 | 2.6663 | 0.8766 | 0.0692 | 0.8074 |
| 2.6809 | 35.0 | 525 | 2.6636 | 0.8766 | 0.0843 | 0.7923 |
| 2.6809 | 36.0 | 540 | 2.6615 | 0.8766 | -0.0330 | 0.9096 |
| 2.6809 | 37.0 | 555 | 2.6594 | 0.8766 | -0.0065 | 0.8831 |
| 2.6809 | 38.0 | 570 | 2.6575 | 0.8766 | 0.2102 | 0.6664 |
| 2.6809 | 39.0 | 585 | 2.6559 | 0.8766 | 0.3005 | 0.5761 |
| 2.6809 | 40.0 | 600 | 2.6541 | 0.8766 | 0.3360 | 0.5406 |
| 2.6809 | 41.0 | 615 | 2.6528 | 0.8766 | 0.2456 | 0.6310 |
| 2.6809 | 42.0 | 630 | 2.6517 | 0.8766 | 0.3399 | 0.5367 |
| 2.6809 | 43.0 | 645 | 2.6509 | 0.8766 | 0.4224 | 0.4542 |
| 2.6809 | 44.0 | 660 | 2.6499 | 0.8766 | 0.4277 | 0.4490 |
| 2.6809 | 45.0 | 675 | 2.6492 | 0.8766 | 0.2815 | 0.5951 |
| 2.6809 | 46.0 | 690 | 2.6485 | 0.8766 | 0.3053 | 0.5714 |
| 2.6809 | 47.0 | 705 | 2.6481 | 0.8766 | 0.2149 | 0.6618 |
| 2.6809 | 48.0 | 720 | 2.6478 | 0.8766 | 0.2285 | 0.6481 |
| 2.6809 | 49.0 | 735 | 2.6475 | 0.8766 | 0.2546 | 0.6220 |
| 2.6809 | 50.0 | 750 | 2.6474 | 0.8766 | 0.3367 | 0.5399 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|