--- license: other library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer base_model: google/gemma-7b datasets: - satpalsr/hindi-sample model-index: - name: gemma-sft-qlora results: [] --- # gemma-sft-qlora This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the satpalsr/hindi-sample dataset. It achieves the following results on the evaluation set: - Loss: 0.6385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1537 | 0.99 | 94 | 1.0988 | | 0.9028 | 1.99 | 189 | 0.8056 | | 0.6553 | 2.99 | 284 | 0.6577 | | 0.4936 | 3.96 | 376 | 0.6385 | ### Framework versions - PEFT 0.7.1 - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2