librarian-bot commited on
Commit
d707a90
1 Parent(s): a0fc3a3

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`microsoft/swin-tiny-patch4-window7-224`](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co./spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co./librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co./davanstrien).

If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co./librarian-bot) [Metadata Request Service](https://huggingface.co./spaces/librarian-bots/metadata_request_service)!

Files changed (1) hide show
  1. README.md +28 -27
README.md CHANGED
@@ -7,20 +7,21 @@ datasets:
7
  - lewtun/dog_food
8
  metrics:
9
  - accuracy
 
10
  model-index:
11
  - name: swin-tiny-finetuned-dogfood
12
  results:
13
  - task:
14
- name: Image Classification
15
  type: image-classification
 
16
  dataset:
17
  name: lewtun/dog_food
18
  type: lewtun/dog_food
19
  args: lewtun--dog_food
20
  metrics:
21
- - name: Accuracy
22
- type: accuracy
23
  value: 0.988
 
24
  - task:
25
  type: image-classification
26
  name: Image Classification
@@ -30,53 +31,53 @@ model-index:
30
  config: lewtun--dog_food
31
  split: test
32
  metrics:
33
- - name: Accuracy
34
- type: accuracy
35
  value: 0.9826666666666667
 
36
  verified: true
37
- - name: Precision Macro
38
- type: precision
39
  value: 0.9820904286553143
 
40
  verified: true
41
- - name: Precision Micro
42
- type: precision
43
  value: 0.9826666666666667
 
44
  verified: true
45
- - name: Precision Weighted
46
- type: precision
47
  value: 0.9828416519866903
 
48
  verified: true
49
- - name: Recall Macro
50
- type: recall
51
  value: 0.9828453314981092
 
52
  verified: true
53
- - name: Recall Micro
54
- type: recall
55
  value: 0.9826666666666667
 
56
  verified: true
57
- - name: Recall Weighted
58
- type: recall
59
  value: 0.9826666666666667
 
60
  verified: true
61
- - name: F1 Macro
62
- type: f1
63
  value: 0.9824101123169301
 
64
  verified: true
65
- - name: F1 Micro
66
- type: f1
67
  value: 0.9826666666666667
 
68
  verified: true
69
- - name: F1 Weighted
70
- type: f1
71
  value: 0.9826983433609648
 
72
  verified: true
73
- - name: loss
74
- type: loss
75
  value: 0.2326570302248001
 
76
  verified: true
77
- - name: matthews_correlation
78
- type: matthews_correlation
79
  value: 0.974016655798285
 
80
  verified: true
81
  ---
82
 
 
7
  - lewtun/dog_food
8
  metrics:
9
  - accuracy
10
+ base_model: microsoft/swin-tiny-patch4-window7-224
11
  model-index:
12
  - name: swin-tiny-finetuned-dogfood
13
  results:
14
  - task:
 
15
  type: image-classification
16
+ name: Image Classification
17
  dataset:
18
  name: lewtun/dog_food
19
  type: lewtun/dog_food
20
  args: lewtun--dog_food
21
  metrics:
22
+ - type: accuracy
 
23
  value: 0.988
24
+ name: Accuracy
25
  - task:
26
  type: image-classification
27
  name: Image Classification
 
31
  config: lewtun--dog_food
32
  split: test
33
  metrics:
34
+ - type: accuracy
 
35
  value: 0.9826666666666667
36
+ name: Accuracy
37
  verified: true
38
+ - type: precision
 
39
  value: 0.9820904286553143
40
+ name: Precision Macro
41
  verified: true
42
+ - type: precision
 
43
  value: 0.9826666666666667
44
+ name: Precision Micro
45
  verified: true
46
+ - type: precision
 
47
  value: 0.9828416519866903
48
+ name: Precision Weighted
49
  verified: true
50
+ - type: recall
 
51
  value: 0.9828453314981092
52
+ name: Recall Macro
53
  verified: true
54
+ - type: recall
 
55
  value: 0.9826666666666667
56
+ name: Recall Micro
57
  verified: true
58
+ - type: recall
 
59
  value: 0.9826666666666667
60
+ name: Recall Weighted
61
  verified: true
62
+ - type: f1
 
63
  value: 0.9824101123169301
64
+ name: F1 Macro
65
  verified: true
66
+ - type: f1
 
67
  value: 0.9826666666666667
68
+ name: F1 Micro
69
  verified: true
70
+ - type: f1
 
71
  value: 0.9826983433609648
72
+ name: F1 Weighted
73
  verified: true
74
+ - type: loss
 
75
  value: 0.2326570302248001
76
+ name: loss
77
  verified: true
78
+ - type: matthews_correlation
 
79
  value: 0.974016655798285
80
+ name: matthews_correlation
81
  verified: true
82
  ---
83