Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`microsoft/swin-tiny-patch4-window7-224`](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co./spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co./librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co./davanstrien).
If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co./librarian-bot) [Metadata Request Service](https://huggingface.co./spaces/librarian-bots/metadata_request_service)!
@@ -7,20 +7,21 @@ datasets:
|
|
7 |
- lewtun/dog_food
|
8 |
metrics:
|
9 |
- accuracy
|
|
|
10 |
model-index:
|
11 |
- name: swin-tiny-finetuned-dogfood
|
12 |
results:
|
13 |
- task:
|
14 |
-
name: Image Classification
|
15 |
type: image-classification
|
|
|
16 |
dataset:
|
17 |
name: lewtun/dog_food
|
18 |
type: lewtun/dog_food
|
19 |
args: lewtun--dog_food
|
20 |
metrics:
|
21 |
-
-
|
22 |
-
type: accuracy
|
23 |
value: 0.988
|
|
|
24 |
- task:
|
25 |
type: image-classification
|
26 |
name: Image Classification
|
@@ -30,53 +31,53 @@ model-index:
|
|
30 |
config: lewtun--dog_food
|
31 |
split: test
|
32 |
metrics:
|
33 |
-
-
|
34 |
-
type: accuracy
|
35 |
value: 0.9826666666666667
|
|
|
36 |
verified: true
|
37 |
-
-
|
38 |
-
type: precision
|
39 |
value: 0.9820904286553143
|
|
|
40 |
verified: true
|
41 |
-
-
|
42 |
-
type: precision
|
43 |
value: 0.9826666666666667
|
|
|
44 |
verified: true
|
45 |
-
-
|
46 |
-
type: precision
|
47 |
value: 0.9828416519866903
|
|
|
48 |
verified: true
|
49 |
-
-
|
50 |
-
type: recall
|
51 |
value: 0.9828453314981092
|
|
|
52 |
verified: true
|
53 |
-
-
|
54 |
-
type: recall
|
55 |
value: 0.9826666666666667
|
|
|
56 |
verified: true
|
57 |
-
-
|
58 |
-
type: recall
|
59 |
value: 0.9826666666666667
|
|
|
60 |
verified: true
|
61 |
-
-
|
62 |
-
type: f1
|
63 |
value: 0.9824101123169301
|
|
|
64 |
verified: true
|
65 |
-
-
|
66 |
-
type: f1
|
67 |
value: 0.9826666666666667
|
|
|
68 |
verified: true
|
69 |
-
-
|
70 |
-
type: f1
|
71 |
value: 0.9826983433609648
|
|
|
72 |
verified: true
|
73 |
-
-
|
74 |
-
type: loss
|
75 |
value: 0.2326570302248001
|
|
|
76 |
verified: true
|
77 |
-
-
|
78 |
-
type: matthews_correlation
|
79 |
value: 0.974016655798285
|
|
|
80 |
verified: true
|
81 |
---
|
82 |
|
|
|
7 |
- lewtun/dog_food
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
11 |
model-index:
|
12 |
- name: swin-tiny-finetuned-dogfood
|
13 |
results:
|
14 |
- task:
|
|
|
15 |
type: image-classification
|
16 |
+
name: Image Classification
|
17 |
dataset:
|
18 |
name: lewtun/dog_food
|
19 |
type: lewtun/dog_food
|
20 |
args: lewtun--dog_food
|
21 |
metrics:
|
22 |
+
- type: accuracy
|
|
|
23 |
value: 0.988
|
24 |
+
name: Accuracy
|
25 |
- task:
|
26 |
type: image-classification
|
27 |
name: Image Classification
|
|
|
31 |
config: lewtun--dog_food
|
32 |
split: test
|
33 |
metrics:
|
34 |
+
- type: accuracy
|
|
|
35 |
value: 0.9826666666666667
|
36 |
+
name: Accuracy
|
37 |
verified: true
|
38 |
+
- type: precision
|
|
|
39 |
value: 0.9820904286553143
|
40 |
+
name: Precision Macro
|
41 |
verified: true
|
42 |
+
- type: precision
|
|
|
43 |
value: 0.9826666666666667
|
44 |
+
name: Precision Micro
|
45 |
verified: true
|
46 |
+
- type: precision
|
|
|
47 |
value: 0.9828416519866903
|
48 |
+
name: Precision Weighted
|
49 |
verified: true
|
50 |
+
- type: recall
|
|
|
51 |
value: 0.9828453314981092
|
52 |
+
name: Recall Macro
|
53 |
verified: true
|
54 |
+
- type: recall
|
|
|
55 |
value: 0.9826666666666667
|
56 |
+
name: Recall Micro
|
57 |
verified: true
|
58 |
+
- type: recall
|
|
|
59 |
value: 0.9826666666666667
|
60 |
+
name: Recall Weighted
|
61 |
verified: true
|
62 |
+
- type: f1
|
|
|
63 |
value: 0.9824101123169301
|
64 |
+
name: F1 Macro
|
65 |
verified: true
|
66 |
+
- type: f1
|
|
|
67 |
value: 0.9826666666666667
|
68 |
+
name: F1 Micro
|
69 |
verified: true
|
70 |
+
- type: f1
|
|
|
71 |
value: 0.9826983433609648
|
72 |
+
name: F1 Weighted
|
73 |
verified: true
|
74 |
+
- type: loss
|
|
|
75 |
value: 0.2326570302248001
|
76 |
+
name: loss
|
77 |
verified: true
|
78 |
+
- type: matthews_correlation
|
|
|
79 |
value: 0.974016655798285
|
80 |
+
name: matthews_correlation
|
81 |
verified: true
|
82 |
---
|
83 |
|