Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,77 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
##
|
13 |
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
##
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
|
|
6 |
|
7 |
+
# Sarvam-2B
|
8 |
|
9 |
+
Sarvam-2B is a 2-billion parameter language model specifically optimized for Indian languages. It provides best in-class performance in 10 Indic languages (bn, gu, hi, kn, ml, mr, or, pa, ta, te) when compared with popular models like Gemma-2-2B and Llama-3.2-3B. It is also competitive against the much larger models like Llama-3.1-8B in these languages. More details can be found in our [release blog](https://www.sarvam.ai/blogs/sarvam-2b).
|
10 |
|
11 |
+
The model was trained with [NVIDIA NeMo™ Framework](https://github.com/NVIDIA/NeMo) on the Yotta Shakti Cloud using HGX H100 systems.
|
12 |
|
13 |
+
## Key Features
|
14 |
|
15 |
+
- **Optimized for 10 Indian Languages**: Built from the ground up to support major Indian languages alongside English
|
16 |
+
- **Superior Token Efficiency**: Achieves fertility rates of 1.4-2.1 across all supported languages, 2-4x more efficient than existing multilingual models
|
17 |
+
- **High-Quality Training Data**: Trained on a curated corpus of ~4 trillion tokens with 2 trillion high-quality Indic tokens
|
18 |
+
- **Efficient Inference**: 4-6x faster inference compared to larger models while matching or exceeding their performance on Indic language tasks
|
19 |
|
20 |
+
## Model Architecture
|
21 |
|
22 |
+
- Hidden size: 2048
|
23 |
+
- Intermediate size: 11,008
|
24 |
+
- Number of attention heads: 16
|
25 |
+
- Number of hidden layers: 28
|
26 |
+
- Number of key-value heads: 8
|
27 |
+
- Maximum position embeddings: 8,192
|
28 |
+
- Activation function: SwiGLU
|
29 |
+
- Positional embeddings: Rotary (RoPE) with theta=10,000
|
30 |
+
- Training: Grouped-query attention and bfloat16 mixed-precision
|
31 |
|
32 |
+
## Performance
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Academic Benchmarks (Zero-shot)
|
35 |
|
36 |
+
- Flores English-to-Indic translation: 46.81 chrF++
|
37 |
+
- CrossSum: 20.88 chrF++
|
38 |
+
- XORQA: 26.47 F1
|
39 |
+
- XQUAD: 41.58 F1
|
40 |
|
41 |
+
### IndicGenBench (One-shot)
|
|
|
|
|
42 |
|
43 |
+
- Flores English-to-Indic translation: 46.81% BLEU
|
44 |
+
- CrossSum: 20.88% chrF++
|
45 |
+
- XORQA: 26.47% F1
|
46 |
+
- XQUAD: 41.58% F1
|
47 |
|
48 |
+
## Usage
|
49 |
|
50 |
+
```python
|
51 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
|
53 |
+
# Load model and tokenizer
|
54 |
+
model = AutoModelForCausalLM.from_pretrained("Sarvam/sarvam-2b")
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("Sarvam/sarvam-2b")
|
56 |
|
57 |
+
# Example usage
|
58 |
+
text = "कर्नाटक की राजधानी है:"
|
59 |
+
inputs = tokenizer(text, return_tensors="pt")
|
60 |
+
outputs = model.generate(**inputs, max_new_tokens=5)
|
61 |
+
result = tokenizer.decode(outputs[0])
|
62 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
## Training Details
|
65 |
|
66 |
+
- Training Infrastructure: Yotta's Shakti cluster
|
67 |
+
- Hardware: 1,024 GPUs
|
68 |
+
- Training Duration: 5 days
|
69 |
+
- Framework: NVIDIA NeMo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
## License
|
72 |
|
73 |
+
Sarvam non-commercial license: See the [LICENSE](license.md) file
|
74 |
|
75 |
+
## Acknowledgements
|
76 |
|
77 |
+
- NVIDIA: for support with the NeMo codebase
|
78 |
+
- Yotta: for sccess to the Shakti GPU cluster
|
79 |
+
- AI4Bharat: for their academic partnership and expertise in Indian language technologies
|