Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +982 -0
- config.json +44 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:557850
|
10 |
+
- loss:MatryoshkaLoss
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: Alibaba-NLP/gte-base-en-v1.5
|
13 |
+
datasets: []
|
14 |
+
metrics:
|
15 |
+
- pearson_cosine
|
16 |
+
- spearman_cosine
|
17 |
+
- pearson_manhattan
|
18 |
+
- spearman_manhattan
|
19 |
+
- pearson_euclidean
|
20 |
+
- spearman_euclidean
|
21 |
+
- pearson_dot
|
22 |
+
- spearman_dot
|
23 |
+
- pearson_max
|
24 |
+
- spearman_max
|
25 |
+
widget:
|
26 |
+
- source_sentence: Mwanamume aliyepangwa vizuri anasimama kwa mguu mmoja karibu na
|
27 |
+
pwani safi ya bahari.
|
28 |
+
sentences:
|
29 |
+
- mtu anacheka wakati wa kufua nguo
|
30 |
+
- Mwanamume fulani yuko nje karibu na ufuo wa bahari.
|
31 |
+
- Mwanamume fulani ameketi kwenye sofa yake.
|
32 |
+
- source_sentence: Mwanamume mwenye ngozi nyeusi akivuta sigareti karibu na chombo
|
33 |
+
cha taka cha kijani.
|
34 |
+
sentences:
|
35 |
+
- Karibu na chombo cha taka mwanamume huyo alisimama na kuvuta sigareti
|
36 |
+
- Kitanda ni chafu.
|
37 |
+
- Alipokuwa kwenye dimbwi la kuogelea mvulana huyo mwenye ugonjwa wa albino alijihadhari
|
38 |
+
na jua kupita kiasi
|
39 |
+
- source_sentence: Mwanamume kijana mwenye nywele nyekundu anaketi ukutani akisoma
|
40 |
+
gazeti huku mwanamke na msichana mchanga wakipita.
|
41 |
+
sentences:
|
42 |
+
- Mwanamume aliyevalia shati la bluu amegonga ukuta kando ya barabara na gari la
|
43 |
+
bluu na gari nyekundu lenye maji nyuma.
|
44 |
+
- Mwanamume mchanga anatazama gazeti huku wanawake wawili wakipita karibu naye.
|
45 |
+
- Mwanamume huyo mchanga analala huku Mama akimwongoza binti yake kwenye bustani.
|
46 |
+
- source_sentence: Wasichana wako nje.
|
47 |
+
sentences:
|
48 |
+
- Wasichana wawili wakisafiri kwenye sehemu ya kusisimua.
|
49 |
+
- Kuna watu watatu wakiongoza gari linaloweza kugeuzwa-geuzwa wakipita watu wengine.
|
50 |
+
- Wasichana watatu wamesimama pamoja katika chumba, mmoja anasikiliza, mwingine
|
51 |
+
anaandika ukutani na wa tatu anaongea nao.
|
52 |
+
- source_sentence: Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso
|
53 |
+
chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo
|
54 |
+
ya miguu ya benchi.
|
55 |
+
sentences:
|
56 |
+
- Mwanamume amelala uso chini kwenye benchi ya bustani.
|
57 |
+
- Mwanamke anaunganisha uzi katika mipira kando ya rundo la mipira
|
58 |
+
- Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.
|
59 |
+
pipeline_tag: sentence-similarity
|
60 |
+
model-index:
|
61 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
|
62 |
+
results:
|
63 |
+
- task:
|
64 |
+
type: semantic-similarity
|
65 |
+
name: Semantic Similarity
|
66 |
+
dataset:
|
67 |
+
name: sts test 768
|
68 |
+
type: sts-test-768
|
69 |
+
metrics:
|
70 |
+
- type: pearson_cosine
|
71 |
+
value: 0.7043347377864616
|
72 |
+
name: Pearson Cosine
|
73 |
+
- type: spearman_cosine
|
74 |
+
value: 0.6964343322647693
|
75 |
+
name: Spearman Cosine
|
76 |
+
- type: pearson_manhattan
|
77 |
+
value: 0.6909108013214409
|
78 |
+
name: Pearson Manhattan
|
79 |
+
- type: spearman_manhattan
|
80 |
+
value: 0.6918757829517036
|
81 |
+
name: Spearman Manhattan
|
82 |
+
- type: pearson_euclidean
|
83 |
+
value: 0.6929234868177542
|
84 |
+
name: Pearson Euclidean
|
85 |
+
- type: spearman_euclidean
|
86 |
+
value: 0.6937500609344119
|
87 |
+
name: Spearman Euclidean
|
88 |
+
- type: pearson_dot
|
89 |
+
value: 0.70124411699517
|
90 |
+
name: Pearson Dot
|
91 |
+
- type: spearman_dot
|
92 |
+
value: 0.6918131755587139
|
93 |
+
name: Spearman Dot
|
94 |
+
- type: pearson_max
|
95 |
+
value: 0.7043347377864616
|
96 |
+
name: Pearson Max
|
97 |
+
- type: spearman_max
|
98 |
+
value: 0.6964343322647693
|
99 |
+
name: Spearman Max
|
100 |
+
- task:
|
101 |
+
type: semantic-similarity
|
102 |
+
name: Semantic Similarity
|
103 |
+
dataset:
|
104 |
+
name: sts test 512
|
105 |
+
type: sts-test-512
|
106 |
+
metrics:
|
107 |
+
- type: pearson_cosine
|
108 |
+
value: 0.7024370656682521
|
109 |
+
name: Pearson Cosine
|
110 |
+
- type: spearman_cosine
|
111 |
+
value: 0.6960997397306026
|
112 |
+
name: Spearman Cosine
|
113 |
+
- type: pearson_manhattan
|
114 |
+
value: 0.6937121372484026
|
115 |
+
name: Pearson Manhattan
|
116 |
+
- type: spearman_manhattan
|
117 |
+
value: 0.6942680507505805
|
118 |
+
name: Spearman Manhattan
|
119 |
+
- type: pearson_euclidean
|
120 |
+
value: 0.6958879339072266
|
121 |
+
name: Pearson Euclidean
|
122 |
+
- type: spearman_euclidean
|
123 |
+
value: 0.6965067811247516
|
124 |
+
name: Spearman Euclidean
|
125 |
+
- type: pearson_dot
|
126 |
+
value: 0.6739585793600888
|
127 |
+
name: Pearson Dot
|
128 |
+
- type: spearman_dot
|
129 |
+
value: 0.6635969331239819
|
130 |
+
name: Spearman Dot
|
131 |
+
- type: pearson_max
|
132 |
+
value: 0.7024370656682521
|
133 |
+
name: Pearson Max
|
134 |
+
- type: spearman_max
|
135 |
+
value: 0.6965067811247516
|
136 |
+
name: Spearman Max
|
137 |
+
- task:
|
138 |
+
type: semantic-similarity
|
139 |
+
name: Semantic Similarity
|
140 |
+
dataset:
|
141 |
+
name: sts test 256
|
142 |
+
type: sts-test-256
|
143 |
+
metrics:
|
144 |
+
- type: pearson_cosine
|
145 |
+
value: 0.6975572102129655
|
146 |
+
name: Pearson Cosine
|
147 |
+
- type: spearman_cosine
|
148 |
+
value: 0.6922084123611896
|
149 |
+
name: Spearman Cosine
|
150 |
+
- type: pearson_manhattan
|
151 |
+
value: 0.7012769244476563
|
152 |
+
name: Pearson Manhattan
|
153 |
+
- type: spearman_manhattan
|
154 |
+
value: 0.7002000478097333
|
155 |
+
name: Spearman Manhattan
|
156 |
+
- type: pearson_euclidean
|
157 |
+
value: 0.7033203116396916
|
158 |
+
name: Pearson Euclidean
|
159 |
+
- type: spearman_euclidean
|
160 |
+
value: 0.7027884000644871
|
161 |
+
name: Spearman Euclidean
|
162 |
+
- type: pearson_dot
|
163 |
+
value: 0.6353839704898405
|
164 |
+
name: Pearson Dot
|
165 |
+
- type: spearman_dot
|
166 |
+
value: 0.6242173680909447
|
167 |
+
name: Spearman Dot
|
168 |
+
- type: pearson_max
|
169 |
+
value: 0.7033203116396916
|
170 |
+
name: Pearson Max
|
171 |
+
- type: spearman_max
|
172 |
+
value: 0.7027884000644871
|
173 |
+
name: Spearman Max
|
174 |
+
- task:
|
175 |
+
type: semantic-similarity
|
176 |
+
name: Semantic Similarity
|
177 |
+
dataset:
|
178 |
+
name: sts test 128
|
179 |
+
type: sts-test-128
|
180 |
+
metrics:
|
181 |
+
- type: pearson_cosine
|
182 |
+
value: 0.6909605436368886
|
183 |
+
name: Pearson Cosine
|
184 |
+
- type: spearman_cosine
|
185 |
+
value: 0.6880114885304113
|
186 |
+
name: Spearman Cosine
|
187 |
+
- type: pearson_manhattan
|
188 |
+
value: 0.7044693468919807
|
189 |
+
name: Pearson Manhattan
|
190 |
+
- type: spearman_manhattan
|
191 |
+
value: 0.7001174190718876
|
192 |
+
name: Spearman Manhattan
|
193 |
+
- type: pearson_euclidean
|
194 |
+
value: 0.7063530897910422
|
195 |
+
name: Pearson Euclidean
|
196 |
+
- type: spearman_euclidean
|
197 |
+
value: 0.7028721535481625
|
198 |
+
name: Spearman Euclidean
|
199 |
+
- type: pearson_dot
|
200 |
+
value: 0.5846530941942547
|
201 |
+
name: Pearson Dot
|
202 |
+
- type: spearman_dot
|
203 |
+
value: 0.5728728042034709
|
204 |
+
name: Spearman Dot
|
205 |
+
- type: pearson_max
|
206 |
+
value: 0.7063530897910422
|
207 |
+
name: Pearson Max
|
208 |
+
- type: spearman_max
|
209 |
+
value: 0.7028721535481625
|
210 |
+
name: Spearman Max
|
211 |
+
- task:
|
212 |
+
type: semantic-similarity
|
213 |
+
name: Semantic Similarity
|
214 |
+
dataset:
|
215 |
+
name: sts test 64
|
216 |
+
type: sts-test-64
|
217 |
+
metrics:
|
218 |
+
- type: pearson_cosine
|
219 |
+
value: 0.680996097859508
|
220 |
+
name: Pearson Cosine
|
221 |
+
- type: spearman_cosine
|
222 |
+
value: 0.6803001320954455
|
223 |
+
name: Spearman Cosine
|
224 |
+
- type: pearson_manhattan
|
225 |
+
value: 0.7053262249895214
|
226 |
+
name: Pearson Manhattan
|
227 |
+
- type: spearman_manhattan
|
228 |
+
value: 0.6987184531053297
|
229 |
+
name: Spearman Manhattan
|
230 |
+
- type: pearson_euclidean
|
231 |
+
value: 0.7061173611755747
|
232 |
+
name: Pearson Euclidean
|
233 |
+
- type: spearman_euclidean
|
234 |
+
value: 0.7003828247494553
|
235 |
+
name: Spearman Euclidean
|
236 |
+
- type: pearson_dot
|
237 |
+
value: 0.5177214664781289
|
238 |
+
name: Pearson Dot
|
239 |
+
- type: spearman_dot
|
240 |
+
value: 0.5019887605325859
|
241 |
+
name: Spearman Dot
|
242 |
+
- type: pearson_max
|
243 |
+
value: 0.7061173611755747
|
244 |
+
name: Pearson Max
|
245 |
+
- type: spearman_max
|
246 |
+
value: 0.7003828247494553
|
247 |
+
name: Spearman Max
|
248 |
+
---
|
249 |
+
|
250 |
+
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
|
251 |
+
|
252 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
253 |
+
|
254 |
+
## Model Details
|
255 |
+
|
256 |
+
### Model Description
|
257 |
+
- **Model Type:** Sentence Transformer
|
258 |
+
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision 269b9aca14a582d83e31b8c76b2e85a266fc1d77 -->
|
259 |
+
- **Maximum Sequence Length:** 8192 tokens
|
260 |
+
- **Output Dimensionality:** 768 tokens
|
261 |
+
- **Similarity Function:** Cosine Similarity
|
262 |
+
<!-- - **Training Dataset:** Unknown -->
|
263 |
+
<!-- - **Language:** Unknown -->
|
264 |
+
<!-- - **License:** Unknown -->
|
265 |
+
|
266 |
+
### Model Sources
|
267 |
+
|
268 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
269 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
270 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
271 |
+
|
272 |
+
### Full Model Architecture
|
273 |
+
|
274 |
+
```
|
275 |
+
SentenceTransformer(
|
276 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
|
277 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
278 |
+
)
|
279 |
+
```
|
280 |
+
|
281 |
+
## Usage
|
282 |
+
|
283 |
+
### Direct Usage (Sentence Transformers)
|
284 |
+
|
285 |
+
First install the Sentence Transformers library:
|
286 |
+
|
287 |
+
```bash
|
288 |
+
pip install -U sentence-transformers
|
289 |
+
```
|
290 |
+
|
291 |
+
Then you can load this model and run inference.
|
292 |
+
```python
|
293 |
+
from sentence_transformers import SentenceTransformer
|
294 |
+
|
295 |
+
# Download from the 🤗 Hub
|
296 |
+
model = SentenceTransformer("sartifyllc/swahili-gte-base-en-v1.5-nli-matryoshka")
|
297 |
+
# Run inference
|
298 |
+
sentences = [
|
299 |
+
'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.',
|
300 |
+
'Mwanamume amelala uso chini kwenye benchi ya bustani.',
|
301 |
+
'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.',
|
302 |
+
]
|
303 |
+
embeddings = model.encode(sentences)
|
304 |
+
print(embeddings.shape)
|
305 |
+
# [3, 768]
|
306 |
+
|
307 |
+
# Get the similarity scores for the embeddings
|
308 |
+
similarities = model.similarity(embeddings, embeddings)
|
309 |
+
print(similarities.shape)
|
310 |
+
# [3, 3]
|
311 |
+
```
|
312 |
+
|
313 |
+
<!--
|
314 |
+
### Direct Usage (Transformers)
|
315 |
+
|
316 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
317 |
+
|
318 |
+
</details>
|
319 |
+
-->
|
320 |
+
|
321 |
+
<!--
|
322 |
+
### Downstream Usage (Sentence Transformers)
|
323 |
+
|
324 |
+
You can finetune this model on your own dataset.
|
325 |
+
|
326 |
+
<details><summary>Click to expand</summary>
|
327 |
+
|
328 |
+
</details>
|
329 |
+
-->
|
330 |
+
|
331 |
+
<!--
|
332 |
+
### Out-of-Scope Use
|
333 |
+
|
334 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
335 |
+
-->
|
336 |
+
|
337 |
+
## Evaluation
|
338 |
+
|
339 |
+
### Metrics
|
340 |
+
|
341 |
+
#### Semantic Similarity
|
342 |
+
* Dataset: `sts-test-768`
|
343 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
344 |
+
|
345 |
+
| Metric | Value |
|
346 |
+
|:--------------------|:-----------|
|
347 |
+
| pearson_cosine | 0.7043 |
|
348 |
+
| **spearman_cosine** | **0.6964** |
|
349 |
+
| pearson_manhattan | 0.6909 |
|
350 |
+
| spearman_manhattan | 0.6919 |
|
351 |
+
| pearson_euclidean | 0.6929 |
|
352 |
+
| spearman_euclidean | 0.6938 |
|
353 |
+
| pearson_dot | 0.7012 |
|
354 |
+
| spearman_dot | 0.6918 |
|
355 |
+
| pearson_max | 0.7043 |
|
356 |
+
| spearman_max | 0.6964 |
|
357 |
+
|
358 |
+
#### Semantic Similarity
|
359 |
+
* Dataset: `sts-test-512`
|
360 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
361 |
+
|
362 |
+
| Metric | Value |
|
363 |
+
|:--------------------|:-----------|
|
364 |
+
| pearson_cosine | 0.7024 |
|
365 |
+
| **spearman_cosine** | **0.6961** |
|
366 |
+
| pearson_manhattan | 0.6937 |
|
367 |
+
| spearman_manhattan | 0.6943 |
|
368 |
+
| pearson_euclidean | 0.6959 |
|
369 |
+
| spearman_euclidean | 0.6965 |
|
370 |
+
| pearson_dot | 0.674 |
|
371 |
+
| spearman_dot | 0.6636 |
|
372 |
+
| pearson_max | 0.7024 |
|
373 |
+
| spearman_max | 0.6965 |
|
374 |
+
|
375 |
+
#### Semantic Similarity
|
376 |
+
* Dataset: `sts-test-256`
|
377 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
378 |
+
|
379 |
+
| Metric | Value |
|
380 |
+
|:--------------------|:-----------|
|
381 |
+
| pearson_cosine | 0.6976 |
|
382 |
+
| **spearman_cosine** | **0.6922** |
|
383 |
+
| pearson_manhattan | 0.7013 |
|
384 |
+
| spearman_manhattan | 0.7002 |
|
385 |
+
| pearson_euclidean | 0.7033 |
|
386 |
+
| spearman_euclidean | 0.7028 |
|
387 |
+
| pearson_dot | 0.6354 |
|
388 |
+
| spearman_dot | 0.6242 |
|
389 |
+
| pearson_max | 0.7033 |
|
390 |
+
| spearman_max | 0.7028 |
|
391 |
+
|
392 |
+
#### Semantic Similarity
|
393 |
+
* Dataset: `sts-test-128`
|
394 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
395 |
+
|
396 |
+
| Metric | Value |
|
397 |
+
|:--------------------|:----------|
|
398 |
+
| pearson_cosine | 0.691 |
|
399 |
+
| **spearman_cosine** | **0.688** |
|
400 |
+
| pearson_manhattan | 0.7045 |
|
401 |
+
| spearman_manhattan | 0.7001 |
|
402 |
+
| pearson_euclidean | 0.7064 |
|
403 |
+
| spearman_euclidean | 0.7029 |
|
404 |
+
| pearson_dot | 0.5847 |
|
405 |
+
| spearman_dot | 0.5729 |
|
406 |
+
| pearson_max | 0.7064 |
|
407 |
+
| spearman_max | 0.7029 |
|
408 |
+
|
409 |
+
#### Semantic Similarity
|
410 |
+
* Dataset: `sts-test-64`
|
411 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
412 |
+
|
413 |
+
| Metric | Value |
|
414 |
+
|:--------------------|:-----------|
|
415 |
+
| pearson_cosine | 0.681 |
|
416 |
+
| **spearman_cosine** | **0.6803** |
|
417 |
+
| pearson_manhattan | 0.7053 |
|
418 |
+
| spearman_manhattan | 0.6987 |
|
419 |
+
| pearson_euclidean | 0.7061 |
|
420 |
+
| spearman_euclidean | 0.7004 |
|
421 |
+
| pearson_dot | 0.5177 |
|
422 |
+
| spearman_dot | 0.502 |
|
423 |
+
| pearson_max | 0.7061 |
|
424 |
+
| spearman_max | 0.7004 |
|
425 |
+
|
426 |
+
<!--
|
427 |
+
## Bias, Risks and Limitations
|
428 |
+
|
429 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
430 |
+
-->
|
431 |
+
|
432 |
+
<!--
|
433 |
+
### Recommendations
|
434 |
+
|
435 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
436 |
+
-->
|
437 |
+
|
438 |
+
## Training Details
|
439 |
+
|
440 |
+
### Training Hyperparameters
|
441 |
+
#### Non-Default Hyperparameters
|
442 |
+
|
443 |
+
- `num_train_epochs`: 1
|
444 |
+
- `warmup_ratio`: 0.1
|
445 |
+
- `fp16`: True
|
446 |
+
- `batch_sampler`: no_duplicates
|
447 |
+
|
448 |
+
#### All Hyperparameters
|
449 |
+
<details><summary>Click to expand</summary>
|
450 |
+
|
451 |
+
- `overwrite_output_dir`: False
|
452 |
+
- `do_predict`: False
|
453 |
+
- `prediction_loss_only`: True
|
454 |
+
- `per_device_train_batch_size`: 8
|
455 |
+
- `per_device_eval_batch_size`: 8
|
456 |
+
- `per_gpu_train_batch_size`: None
|
457 |
+
- `per_gpu_eval_batch_size`: None
|
458 |
+
- `gradient_accumulation_steps`: 1
|
459 |
+
- `eval_accumulation_steps`: None
|
460 |
+
- `learning_rate`: 5e-05
|
461 |
+
- `weight_decay`: 0.0
|
462 |
+
- `adam_beta1`: 0.9
|
463 |
+
- `adam_beta2`: 0.999
|
464 |
+
- `adam_epsilon`: 1e-08
|
465 |
+
- `max_grad_norm`: 1.0
|
466 |
+
- `num_train_epochs`: 1
|
467 |
+
- `max_steps`: -1
|
468 |
+
- `lr_scheduler_type`: linear
|
469 |
+
- `lr_scheduler_kwargs`: {}
|
470 |
+
- `warmup_ratio`: 0.1
|
471 |
+
- `warmup_steps`: 0
|
472 |
+
- `log_level`: passive
|
473 |
+
- `log_level_replica`: warning
|
474 |
+
- `log_on_each_node`: True
|
475 |
+
- `logging_nan_inf_filter`: True
|
476 |
+
- `save_safetensors`: True
|
477 |
+
- `save_on_each_node`: False
|
478 |
+
- `save_only_model`: False
|
479 |
+
- `no_cuda`: False
|
480 |
+
- `use_cpu`: False
|
481 |
+
- `use_mps_device`: False
|
482 |
+
- `seed`: 42
|
483 |
+
- `data_seed`: None
|
484 |
+
- `jit_mode_eval`: False
|
485 |
+
- `use_ipex`: False
|
486 |
+
- `bf16`: False
|
487 |
+
- `fp16`: True
|
488 |
+
- `fp16_opt_level`: O1
|
489 |
+
- `half_precision_backend`: auto
|
490 |
+
- `bf16_full_eval`: False
|
491 |
+
- `fp16_full_eval`: False
|
492 |
+
- `tf32`: None
|
493 |
+
- `local_rank`: 0
|
494 |
+
- `ddp_backend`: None
|
495 |
+
- `tpu_num_cores`: None
|
496 |
+
- `tpu_metrics_debug`: False
|
497 |
+
- `debug`: []
|
498 |
+
- `dataloader_drop_last`: False
|
499 |
+
- `dataloader_num_workers`: 0
|
500 |
+
- `dataloader_prefetch_factor`: None
|
501 |
+
- `past_index`: -1
|
502 |
+
- `disable_tqdm`: False
|
503 |
+
- `remove_unused_columns`: True
|
504 |
+
- `label_names`: None
|
505 |
+
- `load_best_model_at_end`: False
|
506 |
+
- `ignore_data_skip`: False
|
507 |
+
- `fsdp`: []
|
508 |
+
- `fsdp_min_num_params`: 0
|
509 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
510 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
511 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
512 |
+
- `deepspeed`: None
|
513 |
+
- `label_smoothing_factor`: 0.0
|
514 |
+
- `optim`: adamw_torch
|
515 |
+
- `optim_args`: None
|
516 |
+
- `adafactor`: False
|
517 |
+
- `group_by_length`: False
|
518 |
+
- `length_column_name`: length
|
519 |
+
- `ddp_find_unused_parameters`: None
|
520 |
+
- `ddp_bucket_cap_mb`: None
|
521 |
+
- `ddp_broadcast_buffers`: False
|
522 |
+
- `dataloader_pin_memory`: True
|
523 |
+
- `dataloader_persistent_workers`: False
|
524 |
+
- `skip_memory_metrics`: True
|
525 |
+
- `use_legacy_prediction_loop`: False
|
526 |
+
- `push_to_hub`: False
|
527 |
+
- `resume_from_checkpoint`: None
|
528 |
+
- `hub_model_id`: None
|
529 |
+
- `hub_strategy`: every_save
|
530 |
+
- `hub_private_repo`: False
|
531 |
+
- `hub_always_push`: False
|
532 |
+
- `gradient_checkpointing`: False
|
533 |
+
- `gradient_checkpointing_kwargs`: None
|
534 |
+
- `include_inputs_for_metrics`: False
|
535 |
+
- `eval_do_concat_batches`: True
|
536 |
+
- `fp16_backend`: auto
|
537 |
+
- `push_to_hub_model_id`: None
|
538 |
+
- `push_to_hub_organization`: None
|
539 |
+
- `mp_parameters`:
|
540 |
+
- `auto_find_batch_size`: False
|
541 |
+
- `full_determinism`: False
|
542 |
+
- `torchdynamo`: None
|
543 |
+
- `ray_scope`: last
|
544 |
+
- `ddp_timeout`: 1800
|
545 |
+
- `torch_compile`: False
|
546 |
+
- `torch_compile_backend`: None
|
547 |
+
- `torch_compile_mode`: None
|
548 |
+
- `dispatch_batches`: None
|
549 |
+
- `split_batches`: None
|
550 |
+
- `include_tokens_per_second`: False
|
551 |
+
- `include_num_input_tokens_seen`: False
|
552 |
+
- `neftune_noise_alpha`: None
|
553 |
+
- `optim_target_modules`: None
|
554 |
+
- `batch_sampler`: no_duplicates
|
555 |
+
- `multi_dataset_batch_sampler`: proportional
|
556 |
+
|
557 |
+
</details>
|
558 |
+
|
559 |
+
### Training Logs
|
560 |
+
<details><summary>Click to expand</summary>
|
561 |
+
|
562 |
+
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
563 |
+
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
564 |
+
| 0.0029 | 100 | 13.2716 | - | - | - | - | - |
|
565 |
+
| 0.0057 | 200 | 9.83 | - | - | - | - | - |
|
566 |
+
| 0.0086 | 300 | 9.9047 | - | - | - | - | - |
|
567 |
+
| 0.0115 | 400 | 7.5137 | - | - | - | - | - |
|
568 |
+
| 0.0143 | 500 | 7.6419 | - | - | - | - | - |
|
569 |
+
| 0.0172 | 600 | 6.9603 | - | - | - | - | - |
|
570 |
+
| 0.0201 | 700 | 7.3009 | - | - | - | - | - |
|
571 |
+
| 0.0229 | 800 | 7.1397 | - | - | - | - | - |
|
572 |
+
| 0.0258 | 900 | 8.1352 | - | - | - | - | - |
|
573 |
+
| 0.0287 | 1000 | 7.5945 | - | - | - | - | - |
|
574 |
+
| 0.0315 | 1100 | 7.0476 | - | - | - | - | - |
|
575 |
+
| 0.0344 | 1200 | 5.3356 | - | - | - | - | - |
|
576 |
+
| 0.0373 | 1300 | 5.1529 | - | - | - | - | - |
|
577 |
+
| 0.0402 | 1400 | 4.9726 | - | - | - | - | - |
|
578 |
+
| 0.0430 | 1500 | 5.1683 | - | - | - | - | - |
|
579 |
+
| 0.0459 | 1600 | 4.7945 | - | - | - | - | - |
|
580 |
+
| 0.0488 | 1700 | 4.9624 | - | - | - | - | - |
|
581 |
+
| 0.0516 | 1800 | 4.4254 | - | - | - | - | - |
|
582 |
+
| 0.0545 | 1900 | 4.4379 | - | - | - | - | - |
|
583 |
+
| 0.0574 | 2000 | 4.0327 | - | - | - | - | - |
|
584 |
+
| 0.0602 | 2100 | 3.5138 | - | - | - | - | - |
|
585 |
+
| 0.0631 | 2200 | 4.5055 | - | - | - | - | - |
|
586 |
+
| 0.0660 | 2300 | 3.8966 | - | - | - | - | - |
|
587 |
+
| 0.0688 | 2400 | 4.4884 | - | - | - | - | - |
|
588 |
+
| 0.0717 | 2500 | 3.5825 | - | - | - | - | - |
|
589 |
+
| 0.0746 | 2600 | 4.0155 | - | - | - | - | - |
|
590 |
+
| 0.0774 | 2700 | 4.9842 | - | - | - | - | - |
|
591 |
+
| 0.0803 | 2800 | 4.7732 | - | - | - | - | - |
|
592 |
+
| 0.0832 | 2900 | 4.5095 | - | - | - | - | - |
|
593 |
+
| 0.0860 | 3000 | 4.2526 | - | - | - | - | - |
|
594 |
+
| 0.0889 | 3100 | 4.033 | - | - | - | - | - |
|
595 |
+
| 0.0918 | 3200 | 4.0052 | - | - | - | - | - |
|
596 |
+
| 0.0946 | 3300 | 3.197 | - | - | - | - | - |
|
597 |
+
| 0.0975 | 3400 | 3.3423 | - | - | - | - | - |
|
598 |
+
| 0.1004 | 3500 | 2.9528 | - | - | - | - | - |
|
599 |
+
| 0.1033 | 3600 | 3.9315 | - | - | - | - | - |
|
600 |
+
| 0.1061 | 3700 | 3.7733 | - | - | - | - | - |
|
601 |
+
| 0.1090 | 3800 | 3.5153 | - | - | - | - | - |
|
602 |
+
| 0.1119 | 3900 | 4.1326 | - | - | - | - | - |
|
603 |
+
| 0.1147 | 4000 | 5.2179 | - | - | - | - | - |
|
604 |
+
| 0.1176 | 4100 | 6.4314 | - | - | - | - | - |
|
605 |
+
| 0.1205 | 4200 | 6.3485 | - | - | - | - | - |
|
606 |
+
| 0.1233 | 4300 | 4.7771 | - | - | - | - | - |
|
607 |
+
| 0.1262 | 4400 | 4.9055 | - | - | - | - | - |
|
608 |
+
| 0.1291 | 4500 | 3.9025 | - | - | - | - | - |
|
609 |
+
| 0.1319 | 4600 | 4.4638 | - | - | - | - | - |
|
610 |
+
| 0.1348 | 4700 | 5.0049 | - | - | - | - | - |
|
611 |
+
| 0.1377 | 4800 | 4.3124 | - | - | - | - | - |
|
612 |
+
| 0.1405 | 4900 | 4.0027 | - | - | - | - | - |
|
613 |
+
| 0.1434 | 5000 | 4.3173 | - | - | - | - | - |
|
614 |
+
| 0.1463 | 5100 | 3.6629 | - | - | - | - | - |
|
615 |
+
| 0.1491 | 5200 | 4.2759 | - | - | - | - | - |
|
616 |
+
| 0.1520 | 5300 | 3.4621 | - | - | - | - | - |
|
617 |
+
| 0.1549 | 5400 | 3.9251 | - | - | - | - | - |
|
618 |
+
| 0.1577 | 5500 | 4.2294 | - | - | - | - | - |
|
619 |
+
| 0.1606 | 5600 | 3.6244 | - | - | - | - | - |
|
620 |
+
| 0.1635 | 5700 | 4.283 | - | - | - | - | - |
|
621 |
+
| 0.1664 | 5800 | 4.4665 | - | - | - | - | - |
|
622 |
+
| 0.1692 | 5900 | 4.956 | - | - | - | - | - |
|
623 |
+
| 0.1721 | 6000 | 4.795 | - | - | - | - | - |
|
624 |
+
| 0.1750 | 6100 | 4.998 | - | - | - | - | - |
|
625 |
+
| 0.1778 | 6200 | 5.3316 | - | - | - | - | - |
|
626 |
+
| 0.1807 | 6300 | 5.2247 | - | - | - | - | - |
|
627 |
+
| 0.1836 | 6400 | 4.6554 | - | - | - | - | - |
|
628 |
+
| 0.1864 | 6500 | 5.2474 | - | - | - | - | - |
|
629 |
+
| 0.1893 | 6600 | 5.1168 | - | - | - | - | - |
|
630 |
+
| 0.1922 | 6700 | 5.1372 | - | - | - | - | - |
|
631 |
+
| 0.1950 | 6800 | 4.1564 | - | - | - | - | - |
|
632 |
+
| 0.1979 | 6900 | 4.6997 | - | - | - | - | - |
|
633 |
+
| 0.2008 | 7000 | 4.1854 | - | - | - | - | - |
|
634 |
+
| 0.2036 | 7100 | 4.4574 | - | - | - | - | - |
|
635 |
+
| 0.2065 | 7200 | 4.1859 | - | - | - | - | - |
|
636 |
+
| 0.2094 | 7300 | 4.8306 | - | - | - | - | - |
|
637 |
+
| 0.2122 | 7400 | 4.4487 | - | - | - | - | - |
|
638 |
+
| 0.2151 | 7500 | 4.4606 | - | - | - | - | - |
|
639 |
+
| 0.2180 | 7600 | 4.4222 | - | - | - | - | - |
|
640 |
+
| 0.2208 | 7700 | 4.7836 | - | - | - | - | - |
|
641 |
+
| 0.2237 | 7800 | 4.1475 | - | - | - | - | - |
|
642 |
+
| 0.2266 | 7900 | 5.1679 | - | - | - | - | - |
|
643 |
+
| 0.2294 | 8000 | 5.0106 | - | - | - | - | - |
|
644 |
+
| 0.2323 | 8100 | 4.1899 | - | - | - | - | - |
|
645 |
+
| 0.2352 | 8200 | 4.9873 | - | - | - | - | - |
|
646 |
+
| 0.2381 | 8300 | 4.3656 | - | - | - | - | - |
|
647 |
+
| 0.2409 | 8400 | 4.6117 | - | - | - | - | - |
|
648 |
+
| 0.2438 | 8500 | 4.1785 | - | - | - | - | - |
|
649 |
+
| 0.2467 | 8600 | 3.7809 | - | - | - | - | - |
|
650 |
+
| 0.2495 | 8700 | 4.9116 | - | - | - | - | - |
|
651 |
+
| 0.2524 | 8800 | 4.553 | - | - | - | - | - |
|
652 |
+
| 0.2553 | 8900 | 4.3178 | - | - | - | - | - |
|
653 |
+
| 0.2581 | 9000 | 5.6111 | - | - | - | - | - |
|
654 |
+
| 0.2610 | 9100 | 5.4219 | - | - | - | - | - |
|
655 |
+
| 0.2639 | 9200 | 5.5628 | - | - | - | - | - |
|
656 |
+
| 0.2667 | 9300 | 4.4221 | - | - | - | - | - |
|
657 |
+
| 0.2696 | 9400 | 4.7988 | - | - | - | - | - |
|
658 |
+
| 0.2725 | 9500 | 4.9361 | - | - | - | - | - |
|
659 |
+
| 0.2753 | 9600 | 4.7225 | - | - | - | - | - |
|
660 |
+
| 0.2782 | 9700 | 4.7258 | - | - | - | - | - |
|
661 |
+
| 0.2811 | 9800 | 4.7071 | - | - | - | - | - |
|
662 |
+
| 0.2839 | 9900 | 4.5519 | - | - | - | - | - |
|
663 |
+
| 0.2868 | 10000 | 4.5354 | - | - | - | - | - |
|
664 |
+
| 0.2897 | 10100 | 4.3893 | - | - | - | - | - |
|
665 |
+
| 0.2925 | 10200 | 4.7848 | - | - | - | - | - |
|
666 |
+
| 0.2954 | 10300 | 4.7195 | - | - | - | - | - |
|
667 |
+
| 0.2983 | 10400 | 4.0155 | - | - | - | - | - |
|
668 |
+
| 0.3012 | 10500 | 5.1602 | - | - | - | - | - |
|
669 |
+
| 0.3040 | 10600 | 4.6345 | - | - | - | - | - |
|
670 |
+
| 0.3069 | 10700 | 5.39 | - | - | - | - | - |
|
671 |
+
| 0.3098 | 10800 | 4.7974 | - | - | - | - | - |
|
672 |
+
| 0.3126 | 10900 | 4.9736 | - | - | - | - | - |
|
673 |
+
| 0.3155 | 11000 | 5.0949 | - | - | - | - | - |
|
674 |
+
| 0.3184 | 11100 | 4.6704 | - | - | - | - | - |
|
675 |
+
| 0.3212 | 11200 | 4.7001 | - | - | - | - | - |
|
676 |
+
| 0.3241 | 11300 | 4.2913 | - | - | - | - | - |
|
677 |
+
| 0.3270 | 11400 | 4.7536 | - | - | - | - | - |
|
678 |
+
| 0.3298 | 11500 | 4.8349 | - | - | - | - | - |
|
679 |
+
| 0.3327 | 11600 | 4.2567 | - | - | - | - | - |
|
680 |
+
| 0.3356 | 11700 | 4.6754 | - | - | - | - | - |
|
681 |
+
| 0.3384 | 11800 | 4.8534 | - | - | - | - | - |
|
682 |
+
| 0.3413 | 11900 | 4.7486 | - | - | - | - | - |
|
683 |
+
| 0.3442 | 12000 | 4.9194 | - | - | - | - | - |
|
684 |
+
| 0.3470 | 12100 | 4.4572 | - | - | - | - | - |
|
685 |
+
| 0.3499 | 12200 | 4.6173 | - | - | - | - | - |
|
686 |
+
| 0.3528 | 12300 | 5.1292 | - | - | - | - | - |
|
687 |
+
| 0.3556 | 12400 | 4.6138 | - | - | - | - | - |
|
688 |
+
| 0.3585 | 12500 | 4.6884 | - | - | - | - | - |
|
689 |
+
| 0.3614 | 12600 | 4.4245 | - | - | - | - | - |
|
690 |
+
| 0.3643 | 12700 | 4.7534 | - | - | - | - | - |
|
691 |
+
| 0.3671 | 12800 | 4.7027 | - | - | - | - | - |
|
692 |
+
| 0.3700 | 12900 | 4.5186 | - | - | - | - | - |
|
693 |
+
| 0.3729 | 13000 | 3.8917 | - | - | - | - | - |
|
694 |
+
| 0.3757 | 13100 | 4.507 | - | - | - | - | - |
|
695 |
+
| 0.3786 | 13200 | 5.4866 | - | - | - | - | - |
|
696 |
+
| 0.3815 | 13300 | 4.0424 | - | - | - | - | - |
|
697 |
+
| 0.3843 | 13400 | 4.4017 | - | - | - | - | - |
|
698 |
+
| 0.3872 | 13500 | 4.0016 | - | - | - | - | - |
|
699 |
+
| 0.3901 | 13600 | 4.0695 | - | - | - | - | - |
|
700 |
+
| 0.3929 | 13700 | 4.4957 | - | - | - | - | - |
|
701 |
+
| 0.3958 | 13800 | 4.4655 | - | - | - | - | - |
|
702 |
+
| 0.3987 | 13900 | 4.5717 | - | - | - | - | - |
|
703 |
+
| 0.4015 | 14000 | 4.134 | - | - | - | - | - |
|
704 |
+
| 0.4044 | 14100 | 4.2704 | - | - | - | - | - |
|
705 |
+
| 0.4073 | 14200 | 4.7712 | - | - | - | - | - |
|
706 |
+
| 0.4101 | 14300 | 4.3946 | - | - | - | - | - |
|
707 |
+
| 0.4130 | 14400 | 4.5848 | - | - | - | - | - |
|
708 |
+
| 0.4159 | 14500 | 4.4655 | - | - | - | - | - |
|
709 |
+
| 0.4187 | 14600 | 4.278 | - | - | - | - | - |
|
710 |
+
| 0.4216 | 14700 | 4.2877 | - | - | - | - | - |
|
711 |
+
| 0.4245 | 14800 | 3.9299 | - | - | - | - | - |
|
712 |
+
| 0.4274 | 14900 | 4.7078 | - | - | - | - | - |
|
713 |
+
| 0.4302 | 15000 | 4.8527 | - | - | - | - | - |
|
714 |
+
| 0.4331 | 15100 | 4.3476 | - | - | - | - | - |
|
715 |
+
| 0.4360 | 15200 | 4.2012 | - | - | - | - | - |
|
716 |
+
| 0.4388 | 15300 | 4.1766 | - | - | - | - | - |
|
717 |
+
| 0.4417 | 15400 | 3.9842 | - | - | - | - | - |
|
718 |
+
| 0.4446 | 15500 | 4.1244 | - | - | - | - | - |
|
719 |
+
| 0.4474 | 15600 | 4.7983 | - | - | - | - | - |
|
720 |
+
| 0.4503 | 15700 | 4.2341 | - | - | - | - | - |
|
721 |
+
| 0.4532 | 15800 | 4.9829 | - | - | - | - | - |
|
722 |
+
| 0.4560 | 15900 | 4.0221 | - | - | - | - | - |
|
723 |
+
| 0.4589 | 16000 | 4.1082 | - | - | - | - | - |
|
724 |
+
| 0.4618 | 16100 | 3.8922 | - | - | - | - | - |
|
725 |
+
| 0.4646 | 16200 | 4.5382 | - | - | - | - | - |
|
726 |
+
| 0.4675 | 16300 | 4.4428 | - | - | - | - | - |
|
727 |
+
| 0.4704 | 16400 | 3.9087 | - | - | - | - | - |
|
728 |
+
| 0.4732 | 16500 | 3.7465 | - | - | - | - | - |
|
729 |
+
| 0.4761 | 16600 | 4.149 | - | - | - | - | - |
|
730 |
+
| 0.4790 | 16700 | 4.5691 | - | - | - | - | - |
|
731 |
+
| 0.4818 | 16800 | 3.8776 | - | - | - | - | - |
|
732 |
+
| 0.4847 | 16900 | 3.7354 | - | - | - | - | - |
|
733 |
+
| 0.4876 | 17000 | 4.25 | - | - | - | - | - |
|
734 |
+
| 0.4904 | 17100 | 4.4119 | - | - | - | - | - |
|
735 |
+
| 0.4933 | 17200 | 4.2319 | - | - | - | - | - |
|
736 |
+
| 0.4962 | 17300 | 4.3736 | - | - | - | - | - |
|
737 |
+
| 0.4991 | 17400 | 4.5345 | - | - | - | - | - |
|
738 |
+
| 0.5019 | 17500 | 4.1824 | - | - | - | - | - |
|
739 |
+
| 0.5048 | 17600 | 4.0033 | - | - | - | - | - |
|
740 |
+
| 0.5077 | 17700 | 4.277 | - | - | - | - | - |
|
741 |
+
| 0.5105 | 17800 | 4.3553 | - | - | - | - | - |
|
742 |
+
| 0.5134 | 17900 | 3.9528 | - | - | - | - | - |
|
743 |
+
| 0.5163 | 18000 | 4.068 | - | - | - | - | - |
|
744 |
+
| 0.5191 | 18100 | 4.0464 | - | - | - | - | - |
|
745 |
+
| 0.5220 | 18200 | 4.1665 | - | - | - | - | - |
|
746 |
+
| 0.5249 | 18300 | 3.7445 | - | - | - | - | - |
|
747 |
+
| 0.5277 | 18400 | 4.2248 | - | - | - | - | - |
|
748 |
+
| 0.5306 | 18500 | 3.9295 | - | - | - | - | - |
|
749 |
+
| 0.5335 | 18600 | 3.546 | - | - | - | - | - |
|
750 |
+
| 0.5363 | 18700 | 3.7463 | - | - | - | - | - |
|
751 |
+
| 0.5392 | 18800 | 3.9798 | - | - | - | - | - |
|
752 |
+
| 0.5421 | 18900 | 4.4773 | - | - | - | - | - |
|
753 |
+
| 0.5449 | 19000 | 4.3534 | - | - | - | - | - |
|
754 |
+
| 0.5478 | 19100 | 4.2347 | - | - | - | - | - |
|
755 |
+
| 0.5507 | 19200 | 3.8113 | - | - | - | - | - |
|
756 |
+
| 0.5535 | 19300 | 4.4689 | - | - | - | - | - |
|
757 |
+
| 0.5564 | 19400 | 4.2188 | - | - | - | - | - |
|
758 |
+
| 0.5593 | 19500 | 4.1266 | - | - | - | - | - |
|
759 |
+
| 0.5622 | 19600 | 3.9222 | - | - | - | - | - |
|
760 |
+
| 0.5650 | 19700 | 4.38 | - | - | - | - | - |
|
761 |
+
| 0.5679 | 19800 | 4.4557 | - | - | - | - | - |
|
762 |
+
| 0.5708 | 19900 | 4.7566 | - | - | - | - | - |
|
763 |
+
| 0.5736 | 20000 | 3.8922 | - | - | - | - | - |
|
764 |
+
| 0.5765 | 20100 | 4.0263 | - | - | - | - | - |
|
765 |
+
| 0.5794 | 20200 | 3.9258 | - | - | - | - | - |
|
766 |
+
| 0.5822 | 20300 | 4.3767 | - | - | - | - | - |
|
767 |
+
| 0.5851 | 20400 | 4.1211 | - | - | - | - | - |
|
768 |
+
| 0.5880 | 20500 | 4.3083 | - | - | - | - | - |
|
769 |
+
| 0.5908 | 20600 | 4.4544 | - | - | - | - | - |
|
770 |
+
| 0.5937 | 20700 | 4.0118 | - | - | - | - | - |
|
771 |
+
| 0.5966 | 20800 | 3.9136 | - | - | - | - | - |
|
772 |
+
| 0.5994 | 20900 | 3.8614 | - | - | - | - | - |
|
773 |
+
| 0.6023 | 21000 | 3.8057 | - | - | - | - | - |
|
774 |
+
| 0.6052 | 21100 | 4.4934 | - | - | - | - | - |
|
775 |
+
| 0.6080 | 21200 | 3.9206 | - | - | - | - | - |
|
776 |
+
| 0.6109 | 21300 | 4.43 | - | - | - | - | - |
|
777 |
+
| 0.6138 | 21400 | 4.0576 | - | - | - | - | - |
|
778 |
+
| 0.6166 | 21500 | 3.9019 | - | - | - | - | - |
|
779 |
+
| 0.6195 | 21600 | 4.4216 | - | - | - | - | - |
|
780 |
+
| 0.6224 | 21700 | 4.0959 | - | - | - | - | - |
|
781 |
+
| 0.6253 | 21800 | 3.8756 | - | - | - | - | - |
|
782 |
+
| 0.6281 | 21900 | 4.7791 | - | - | - | - | - |
|
783 |
+
| 0.6310 | 22000 | 3.6284 | - | - | - | - | - |
|
784 |
+
| 0.6339 | 22100 | 4.5534 | - | - | - | - | - |
|
785 |
+
| 0.6367 | 22200 | 4.18 | - | - | - | - | - |
|
786 |
+
| 0.6396 | 22300 | 4.3002 | - | - | - | - | - |
|
787 |
+
| 0.6425 | 22400 | 3.7162 | - | - | - | - | - |
|
788 |
+
| 0.6453 | 22500 | 4.8495 | - | - | - | - | - |
|
789 |
+
| 0.6482 | 22600 | 4.2966 | - | - | - | - | - |
|
790 |
+
| 0.6511 | 22700 | 3.7718 | - | - | - | - | - |
|
791 |
+
| 0.6539 | 22800 | 4.2257 | - | - | - | - | - |
|
792 |
+
| 0.6568 | 22900 | 3.9821 | - | - | - | - | - |
|
793 |
+
| 0.6597 | 23000 | 4.0853 | - | - | - | - | - |
|
794 |
+
| 0.6625 | 23100 | 3.6124 | - | - | - | - | - |
|
795 |
+
| 0.6654 | 23200 | 3.732 | - | - | - | - | - |
|
796 |
+
| 0.6683 | 23300 | 4.3821 | - | - | - | - | - |
|
797 |
+
| 0.6711 | 23400 | 4.229 | - | - | - | - | - |
|
798 |
+
| 0.6740 | 23500 | 4.2589 | - | - | - | - | - |
|
799 |
+
| 0.6769 | 23600 | 4.4975 | - | - | - | - | - |
|
800 |
+
| 0.6797 | 23700 | 3.8062 | - | - | - | - | - |
|
801 |
+
| 0.6826 | 23800 | 3.6924 | - | - | - | - | - |
|
802 |
+
| 0.6855 | 23900 | 3.7736 | - | - | - | - | - |
|
803 |
+
| 0.6883 | 24000 | 3.7815 | - | - | - | - | - |
|
804 |
+
| 0.6912 | 24100 | 4.1192 | - | - | - | - | - |
|
805 |
+
| 0.6941 | 24200 | 4.2336 | - | - | - | - | - |
|
806 |
+
| 0.6970 | 24300 | 4.1145 | - | - | - | - | - |
|
807 |
+
| 0.6998 | 24400 | 4.0681 | - | - | - | - | - |
|
808 |
+
| 0.7027 | 24500 | 4.0492 | - | - | - | - | - |
|
809 |
+
| 0.7056 | 24600 | 3.7831 | - | - | - | - | - |
|
810 |
+
| 0.7084 | 24700 | 4.2445 | - | - | - | - | - |
|
811 |
+
| 0.7113 | 24800 | 3.9308 | - | - | - | - | - |
|
812 |
+
| 0.7142 | 24900 | 3.8705 | - | - | - | - | - |
|
813 |
+
| 0.7170 | 25000 | 3.6998 | - | - | - | - | - |
|
814 |
+
| 0.7199 | 25100 | 3.4736 | - | - | - | - | - |
|
815 |
+
| 0.7228 | 25200 | 3.9971 | - | - | - | - | - |
|
816 |
+
| 0.7256 | 25300 | 3.8292 | - | - | - | - | - |
|
817 |
+
| 0.7285 | 25400 | 3.8499 | - | - | - | - | - |
|
818 |
+
| 0.7314 | 25500 | 3.8732 | - | - | - | - | - |
|
819 |
+
| 0.7342 | 25600 | 3.9409 | - | - | - | - | - |
|
820 |
+
| 0.7371 | 25700 | 4.4416 | - | - | - | - | - |
|
821 |
+
| 0.7400 | 25800 | 3.663 | - | - | - | - | - |
|
822 |
+
| 0.7428 | 25900 | 3.9786 | - | - | - | - | - |
|
823 |
+
| 0.7457 | 26000 | 4.1781 | - | - | - | - | - |
|
824 |
+
| 0.7486 | 26100 | 3.692 | - | - | - | - | - |
|
825 |
+
| 0.7514 | 26200 | 3.2601 | - | - | - | - | - |
|
826 |
+
| 0.7543 | 26300 | 7.1759 | - | - | - | - | - |
|
827 |
+
| 0.7572 | 26400 | 7.0459 | - | - | - | - | - |
|
828 |
+
| 0.7601 | 26500 | 6.1797 | - | - | - | - | - |
|
829 |
+
| 0.7629 | 26600 | 6.2055 | - | - | - | - | - |
|
830 |
+
| 0.7658 | 26700 | 6.1403 | - | - | - | - | - |
|
831 |
+
| 0.7687 | 26800 | 5.703 | - | - | - | - | - |
|
832 |
+
| 0.7715 | 26900 | 6.1283 | - | - | - | - | - |
|
833 |
+
| 0.7744 | 27000 | 5.71 | - | - | - | - | - |
|
834 |
+
| 0.7773 | 27100 | 5.3105 | - | - | - | - | - |
|
835 |
+
| 0.7801 | 27200 | 5.4202 | - | - | - | - | - |
|
836 |
+
| 0.7830 | 27300 | 5.2964 | - | - | - | - | - |
|
837 |
+
| 0.7859 | 27400 | 5.4852 | - | - | - | - | - |
|
838 |
+
| 0.7887 | 27500 | 5.241 | - | - | - | - | - |
|
839 |
+
| 0.7916 | 27600 | 5.4322 | - | - | - | - | - |
|
840 |
+
| 0.7945 | 27700 | 5.6285 | - | - | - | - | - |
|
841 |
+
| 0.7973 | 27800 | 5.0215 | - | - | - | - | - |
|
842 |
+
| 0.8002 | 27900 | 5.2433 | - | - | - | - | - |
|
843 |
+
| 0.8031 | 28000 | 4.9617 | - | - | - | - | - |
|
844 |
+
| 0.8059 | 28100 | 4.9479 | - | - | - | - | - |
|
845 |
+
| 0.8088 | 28200 | 4.9077 | - | - | - | - | - |
|
846 |
+
| 0.8117 | 28300 | 4.853 | - | - | - | - | - |
|
847 |
+
| 0.8145 | 28400 | 4.6727 | - | - | - | - | - |
|
848 |
+
| 0.8174 | 28500 | 4.9987 | - | - | - | - | - |
|
849 |
+
| 0.8203 | 28600 | 4.8405 | - | - | - | - | - |
|
850 |
+
| 0.8232 | 28700 | 4.9627 | - | - | - | - | - |
|
851 |
+
| 0.8260 | 28800 | 4.5608 | - | - | - | - | - |
|
852 |
+
| 0.8289 | 28900 | 5.0802 | - | - | - | - | - |
|
853 |
+
| 0.8318 | 29000 | 4.9069 | - | - | - | - | - |
|
854 |
+
| 0.8346 | 29100 | 4.8605 | - | - | - | - | - |
|
855 |
+
| 0.8375 | 29200 | 4.6424 | - | - | - | - | - |
|
856 |
+
| 0.8404 | 29300 | 4.7813 | - | - | - | - | - |
|
857 |
+
| 0.8432 | 29400 | 4.5925 | - | - | - | - | - |
|
858 |
+
| 0.8461 | 29500 | 4.7081 | - | - | - | - | - |
|
859 |
+
| 0.8490 | 29600 | 4.4319 | - | - | - | - | - |
|
860 |
+
| 0.8518 | 29700 | 4.7291 | - | - | - | - | - |
|
861 |
+
| 0.8547 | 29800 | 4.749 | - | - | - | - | - |
|
862 |
+
| 0.8576 | 29900 | 4.6148 | - | - | - | - | - |
|
863 |
+
| 0.8604 | 30000 | 4.2549 | - | - | - | - | - |
|
864 |
+
| 0.8633 | 30100 | 4.3415 | - | - | - | - | - |
|
865 |
+
| 0.8662 | 30200 | 4.1999 | - | - | - | - | - |
|
866 |
+
| 0.8690 | 30300 | 4.4298 | - | - | - | - | - |
|
867 |
+
| 0.8719 | 30400 | 4.3612 | - | - | - | - | - |
|
868 |
+
| 0.8748 | 30500 | 4.4834 | - | - | - | - | - |
|
869 |
+
| 0.8776 | 30600 | 4.4774 | - | - | - | - | - |
|
870 |
+
| 0.8805 | 30700 | 4.2524 | - | - | - | - | - |
|
871 |
+
| 0.8834 | 30800 | 4.5562 | - | - | - | - | - |
|
872 |
+
| 0.8863 | 30900 | 4.5261 | - | - | - | - | - |
|
873 |
+
| 0.8891 | 31000 | 4.0262 | - | - | - | - | - |
|
874 |
+
| 0.8920 | 31100 | 4.1109 | - | - | - | - | - |
|
875 |
+
| 0.8949 | 31200 | 4.1955 | - | - | - | - | - |
|
876 |
+
| 0.8977 | 31300 | 4.3169 | - | - | - | - | - |
|
877 |
+
| 0.9006 | 31400 | 4.5862 | - | - | - | - | - |
|
878 |
+
| 0.9035 | 31500 | 4.5503 | - | - | - | - | - |
|
879 |
+
| 0.9063 | 31600 | 4.2587 | - | - | - | - | - |
|
880 |
+
| 0.9092 | 31700 | 4.0028 | - | - | - | - | - |
|
881 |
+
| 0.9121 | 31800 | 4.3575 | - | - | - | - | - |
|
882 |
+
| 0.9149 | 31900 | 4.1033 | - | - | - | - | - |
|
883 |
+
| 0.9178 | 32000 | 4.2877 | - | - | - | - | - |
|
884 |
+
| 0.9207 | 32100 | 3.9537 | - | - | - | - | - |
|
885 |
+
| 0.9235 | 32200 | 4.107 | - | - | - | - | - |
|
886 |
+
| 0.9264 | 32300 | 4.3288 | - | - | - | - | - |
|
887 |
+
| 0.9293 | 32400 | 4.102 | - | - | - | - | - |
|
888 |
+
| 0.9321 | 32500 | 4.1751 | - | - | - | - | - |
|
889 |
+
| 0.9350 | 32600 | 3.7919 | - | - | - | - | - |
|
890 |
+
| 0.9379 | 32700 | 4.0939 | - | - | - | - | - |
|
891 |
+
| 0.9407 | 32800 | 4.1822 | - | - | - | - | - |
|
892 |
+
| 0.9436 | 32900 | 3.959 | - | - | - | - | - |
|
893 |
+
| 0.9465 | 33000 | 3.9173 | - | - | - | - | - |
|
894 |
+
| 0.9493 | 33100 | 4.3087 | - | - | - | - | - |
|
895 |
+
| 0.9522 | 33200 | 4.1239 | - | - | - | - | - |
|
896 |
+
| 0.9551 | 33300 | 4.1012 | - | - | - | - | - |
|
897 |
+
| 0.9580 | 33400 | 3.9988 | - | - | - | - | - |
|
898 |
+
| 0.9608 | 33500 | 4.1478 | - | - | - | - | - |
|
899 |
+
| 0.9637 | 33600 | 4.1669 | - | - | - | - | - |
|
900 |
+
| 0.9666 | 33700 | 4.0398 | - | - | - | - | - |
|
901 |
+
| 0.9694 | 33800 | 3.9814 | - | - | - | - | - |
|
902 |
+
| 0.9723 | 33900 | 4.3764 | - | - | - | - | - |
|
903 |
+
| 0.9752 | 34000 | 4.2847 | - | - | - | - | - |
|
904 |
+
| 0.9780 | 34100 | 3.9461 | - | - | - | - | - |
|
905 |
+
| 0.9809 | 34200 | 4.3377 | - | - | - | - | - |
|
906 |
+
| 0.9838 | 34300 | 3.8114 | - | - | - | - | - |
|
907 |
+
| 0.9866 | 34400 | 4.0827 | - | - | - | - | - |
|
908 |
+
| 0.9895 | 34500 | 4.0014 | - | - | - | - | - |
|
909 |
+
| 0.9924 | 34600 | 4.3964 | - | - | - | - | - |
|
910 |
+
| 0.9952 | 34700 | 3.9103 | - | - | - | - | - |
|
911 |
+
| 0.9981 | 34800 | 4.0363 | - | - | - | - | - |
|
912 |
+
| 1.0 | 34866 | - | 0.6880 | 0.6922 | 0.6961 | 0.6803 | 0.6964 |
|
913 |
+
|
914 |
+
</details>
|
915 |
+
|
916 |
+
### Framework Versions
|
917 |
+
- Python: 3.11.9
|
918 |
+
- Sentence Transformers: 3.0.1
|
919 |
+
- Transformers: 4.40.1
|
920 |
+
- PyTorch: 2.3.0+cu121
|
921 |
+
- Accelerate: 0.29.3
|
922 |
+
- Datasets: 2.19.0
|
923 |
+
- Tokenizers: 0.19.1
|
924 |
+
|
925 |
+
## Citation
|
926 |
+
|
927 |
+
### BibTeX
|
928 |
+
|
929 |
+
#### Sentence Transformers
|
930 |
+
```bibtex
|
931 |
+
@inproceedings{reimers-2019-sentence-bert,
|
932 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
933 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
934 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
935 |
+
month = "11",
|
936 |
+
year = "2019",
|
937 |
+
publisher = "Association for Computational Linguistics",
|
938 |
+
url = "https://arxiv.org/abs/1908.10084",
|
939 |
+
}
|
940 |
+
```
|
941 |
+
|
942 |
+
#### MatryoshkaLoss
|
943 |
+
```bibtex
|
944 |
+
@misc{kusupati2024matryoshka,
|
945 |
+
title={Matryoshka Representation Learning},
|
946 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
947 |
+
year={2024},
|
948 |
+
eprint={2205.13147},
|
949 |
+
archivePrefix={arXiv},
|
950 |
+
primaryClass={cs.LG}
|
951 |
+
}
|
952 |
+
```
|
953 |
+
|
954 |
+
#### MultipleNegativesRankingLoss
|
955 |
+
```bibtex
|
956 |
+
@misc{henderson2017efficient,
|
957 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
958 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
959 |
+
year={2017},
|
960 |
+
eprint={1705.00652},
|
961 |
+
archivePrefix={arXiv},
|
962 |
+
primaryClass={cs.CL}
|
963 |
+
}
|
964 |
+
```
|
965 |
+
|
966 |
+
<!--
|
967 |
+
## Glossary
|
968 |
+
|
969 |
+
*Clearly define terms in order to be accessible across audiences.*
|
970 |
+
-->
|
971 |
+
|
972 |
+
<!--
|
973 |
+
## Model Card Authors
|
974 |
+
|
975 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
976 |
+
-->
|
977 |
+
|
978 |
+
<!--
|
979 |
+
## Model Card Contact
|
980 |
+
|
981 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
982 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Alibaba-NLP/gte-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"layer_norm_type": "layer_norm",
|
24 |
+
"logn_attention_clip1": false,
|
25 |
+
"logn_attention_scale": false,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "new",
|
28 |
+
"num_attention_heads": 12,
|
29 |
+
"num_hidden_layers": 12,
|
30 |
+
"pack_qkv": true,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"position_embedding_type": "rope",
|
33 |
+
"rope_scaling": {
|
34 |
+
"factor": 2.0,
|
35 |
+
"type": "ntk"
|
36 |
+
},
|
37 |
+
"rope_theta": 500000,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.40.1",
|
40 |
+
"type_vocab_size": 0,
|
41 |
+
"unpad_inputs": false,
|
42 |
+
"use_memory_efficient_attention": false,
|
43 |
+
"vocab_size": 30528
|
44 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.40.1",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b996986ce621b15630145999840d5254090a4cf1dd31d66aafb65bba5d8570e
|
3 |
+
size 547119128
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|