innocent-charles commited on
Commit
cc9c00f
1 Parent(s): 712a623

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -160
README.md CHANGED
@@ -32,7 +32,6 @@ library_name: transformers
32
  # AViLaMa : African Vision-Languages Aligment Pre-Training Model.
33
  Learning Visual Concepts Directly From African Languages Supervision. [Click to see paper](www.sartify.com)
34
 
35
-
36
  ## Model Details
37
  AViLaMa is the large open-source text-vision alignment pre-training model in African languages. It brings a way to learn visual concepts directly from African languages supervision. Inspired from OpenAI CLIP, but with more modalities like video, audio, etc.. and other techniques like agnostic languages encoding, data filtering network. All for more than 12 African languages, trained on the #AViLaDa-2B datasets of filtered image, video, audio-text pairs. We are also working to make it usable in directly vision-vision tasks.
38
 
@@ -52,36 +51,25 @@ model = AutoModel.from_pretrained("sartifyllc/AViLaMa")
52
  tokenizer = AutoTokenizer.from_pretrained("sartifyllc/AViLaMa")
53
  model = model.eval()
54
  ```
55
-
56
- ### Model Sources [optional]
57
-
58
- <!-- Provide the basic links for the model. -->
59
-
60
- - **Repository :** (AViLaMa-Sources)[https://github.com/Sartify/AViLaMa-Sources]
61
- - **Paper :** Comming...
62
- - **Demo :** Comming...
63
-
64
- ## Uses
65
-
66
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
67
-
68
- ### Direct Use
69
-
70
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
71
-
72
- [More Information Needed]
73
-
74
- ### Downstream Use [optional]
75
-
76
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
77
-
78
- [More Information Needed]
79
-
80
- ### Out-of-Scope Use
81
-
82
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
83
-
84
- [More Information Needed]
85
 
86
  ## Bias, Risks, and Limitations
87
 
@@ -95,133 +83,4 @@ model = model.eval()
95
 
96
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
97
 
98
- ## How to Get Started with the Model
99
-
100
- Use the code below to get started with the model.
101
-
102
- [More Information Needed]
103
-
104
- ## Training Details
105
-
106
- ### Training Data
107
-
108
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
109
-
110
- [More Information Needed]
111
-
112
- ### Training Procedure
113
-
114
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
115
-
116
- #### Preprocessing [optional]
117
-
118
- [More Information Needed]
119
-
120
-
121
- #### Training Hyperparameters
122
-
123
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
124
-
125
- #### Speeds, Sizes, Times [optional]
126
-
127
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
128
-
129
- [More Information Needed]
130
-
131
- ## Evaluation
132
-
133
- <!-- This section describes the evaluation protocols and provides the results. -->
134
-
135
- ### Testing Data, Factors & Metrics
136
-
137
- #### Testing Data
138
-
139
- <!-- This should link to a Dataset Card if possible. -->
140
-
141
- [More Information Needed]
142
-
143
- #### Factors
144
-
145
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
146
-
147
- [More Information Needed]
148
-
149
- #### Metrics
150
-
151
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
152
-
153
- [More Information Needed]
154
-
155
- ### Results
156
-
157
- [More Information Needed]
158
-
159
- #### Summary
160
-
161
-
162
-
163
- ## Model Examination [optional]
164
-
165
- <!-- Relevant interpretability work for the model goes here -->
166
-
167
- [More Information Needed]
168
-
169
- ## Environmental Impact
170
-
171
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
172
-
173
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
174
-
175
- - **Hardware Type:** [More Information Needed]
176
- - **Hours used:** [More Information Needed]
177
- - **Cloud Provider:** [More Information Needed]
178
- - **Compute Region:** [More Information Needed]
179
- - **Carbon Emitted:** [More Information Needed]
180
-
181
- ## Technical Specifications [optional]
182
-
183
- ### Model Architecture and Objective
184
-
185
- [More Information Needed]
186
-
187
- ### Compute Infrastructure
188
-
189
- [More Information Needed]
190
-
191
- #### Hardware
192
-
193
- [More Information Needed]
194
-
195
- #### Software
196
-
197
- [More Information Needed]
198
-
199
- ## Citation [optional]
200
-
201
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
202
-
203
- **BibTeX:**
204
-
205
- [More Information Needed]
206
-
207
- **APA:**
208
-
209
- [More Information Needed]
210
-
211
- ## Glossary [optional]
212
-
213
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
214
-
215
- [More Information Needed]
216
-
217
- ## More Information [optional]
218
-
219
- [More Information Needed]
220
-
221
- ## Model Card Authors [optional]
222
-
223
- [More Information Needed]
224
-
225
- ## Model Card Contact
226
 
227
- [More Information Needed]
 
32
  # AViLaMa : African Vision-Languages Aligment Pre-Training Model.
33
  Learning Visual Concepts Directly From African Languages Supervision. [Click to see paper](www.sartify.com)
34
 
 
35
  ## Model Details
36
  AViLaMa is the large open-source text-vision alignment pre-training model in African languages. It brings a way to learn visual concepts directly from African languages supervision. Inspired from OpenAI CLIP, but with more modalities like video, audio, etc.. and other techniques like agnostic languages encoding, data filtering network. All for more than 12 African languages, trained on the #AViLaDa-2B datasets of filtered image, video, audio-text pairs. We are also working to make it usable in directly vision-vision tasks.
37
 
 
51
  tokenizer = AutoTokenizer.from_pretrained("sartifyllc/AViLaMa")
52
  model = model.eval()
53
  ```
54
+ ## Model Sources
55
+ - **Repository :** [AViLaMa-Sources](https://github.com/Sartify/AViLaMa-Sources)
56
+ - **Datasets :** Coming...
57
+ - **Paper :** Coming...
58
+ - **Demo :** Coming...
59
+
60
+ ### Direct & Downstream Use:
61
+ 1. zero shot semantic image retrieval and ranking tasks.
62
+ 2. zero shot semantic audio retrieval and ranking tasks.
63
+ 3. zero shot semantic video retrieval and ranking tasks.
64
+ 4. zero shot image classification tasks.
65
+ 5. Zero shot video classification tasks.
66
+ 6. Zero shot audio classification tasks.
67
+ 7. visual QA tasks.
68
+ 8. visual conversional GenAI tasks.
69
+ 9. image and video capturing tasks.
70
+ 10. images and art generation tasks.
71
+ 11. text-images analysis tasks.
72
+ 12. content moderation task.
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  ## Bias, Risks, and Limitations
75
 
 
83
 
84
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86