innocent-charles
commited on
Commit
•
46a6847
1
Parent(s):
9231b87
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: apple-sample-code-license
|
4 |
+
license_link: LICENSE
|
5 |
+
---
|
6 |
+
A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-5B.
|
7 |
+
Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data.
|
8 |
+
This model was trained on 5B images that were filtered from a pool of 43B uncurated image-text pairs
|
9 |
+
(12.8B image-text pairs from CommonPool-12.8B + 30B additional public image-text pairs).
|
10 |
+
|
11 |
+
This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn).
|
12 |
+
These weights are directly usable in OpenCLIP (image + text).
|
13 |
+
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
- **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification.
|
18 |
+
- **Dataset:** DFN-5b
|
19 |
+
- **Papers:**
|
20 |
+
- Data Filtering Networks: https://arxiv.org/abs/2309.17425
|
21 |
+
- **Samples Seen:** 39B (224 x 224) + 5B (384 x 384)
|
22 |
+
## Model Metrics
|
23 |
+
| dataset | metric |
|
24 |
+
|:-----------------------|---------:|
|
25 |
+
| ImageNet 1k | 0.84218 |
|
26 |
+
| Caltech-101 | 0.954479 |
|
27 |
+
| CIFAR-10 | 0.9879 |
|
28 |
+
| CIFAR-100 | 0.9041 |
|
29 |
+
| CLEVR Counts | 0.362467 |
|
30 |
+
| CLEVR Distance | 0.206067 |
|
31 |
+
| Country211 | 0.37673 |
|
32 |
+
| Describable Textures | 0.71383 |
|
33 |
+
| EuroSAT | 0.608333 |
|
34 |
+
| FGVC Aircraft | 0.719938 |
|
35 |
+
| Food-101 | 0.963129 |
|
36 |
+
| GTSRB | 0.679018 |
|
37 |
+
| ImageNet Sketch | 0.73338 |
|
38 |
+
| ImageNet v2 | 0.7837 |
|
39 |
+
| ImageNet-A | 0.7992 |
|
40 |
+
| ImageNet-O | 0.3785 |
|
41 |
+
| ImageNet-R | 0.937633 |
|
42 |
+
| KITTI Vehicle Distance | 0.38256 |
|
43 |
+
| MNIST | 0.8372 |
|
44 |
+
| ObjectNet <sup>1</sup> | 0.796867 |
|
45 |
+
| Oxford Flowers-102 | 0.896834 |
|
46 |
+
| Oxford-IIIT Pet | 0.966841 |
|
47 |
+
| Pascal VOC 2007 | 0.826255 |
|
48 |
+
| PatchCamelyon | 0.695953 |
|
49 |
+
| Rendered SST2 | 0.566722 |
|
50 |
+
| RESISC45 | 0.755079 |
|
51 |
+
| Stanford Cars | 0.959955 |
|
52 |
+
| STL-10 | 0.991125 |
|
53 |
+
| SUN397 | 0.772799 |
|
54 |
+
| SVHN | 0.671251 |
|
55 |
+
| Flickr | 0.8808 |
|
56 |
+
| MSCOCO | 0.636889 |
|
57 |
+
| WinoGAViL | 0.571813 |
|
58 |
+
| iWildCam | 0.224911 |
|
59 |
+
| Camelyon17 | 0.711536 |
|
60 |
+
| FMoW | 0.209024 |
|
61 |
+
| Dollar Street | 0.71729 |
|
62 |
+
| GeoDE | 0.935699 |
|
63 |
+
| **Average** | **0.709421** |
|
64 |
+
|
65 |
+
|
66 |
+
[1]: Center-crop pre-processing used for ObjectNet (squashing results in lower accuracy of 0.737)
|
67 |
+
## Model Usage
|
68 |
+
### With OpenCLIP
|
69 |
+
```
|
70 |
+
import torch
|
71 |
+
import torch.nn.functional as F
|
72 |
+
from urllib.request import urlopen
|
73 |
+
from PIL import Image
|
74 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
75 |
+
|
76 |
+
model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384')
|
77 |
+
tokenizer = get_tokenizer('ViT-H-14')
|
78 |
+
|
79 |
+
image = Image.open(urlopen(
|
80 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
81 |
+
))
|
82 |
+
image = preprocess(image).unsqueeze(0)
|
83 |
+
|
84 |
+
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
|
85 |
+
text = tokenizer(labels_list, context_length=model.context_length)
|
86 |
+
|
87 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
88 |
+
image_features = model.encode_image(image)
|
89 |
+
text_features = model.encode_text(text)
|
90 |
+
image_features = F.normalize(image_features, dim=-1)
|
91 |
+
text_features = F.normalize(text_features, dim=-1)
|
92 |
+
|
93 |
+
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
|
94 |
+
|
95 |
+
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
|
96 |
+
print("Label probabilities: ", zipped_list)
|
97 |
+
```
|
98 |
+
|
99 |
+
## Citation
|
100 |
+
```bibtex
|
101 |
+
@article{fang2023data,
|
102 |
+
title={Data Filtering Networks},
|
103 |
+
author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
|
104 |
+
journal={arXiv preprint arXiv:2309.17425},
|
105 |
+
year={2023}
|
106 |
+
}
|
107 |
+
|
108 |
+
```
|