--- tags: - generated_from_trainer model-index: - name: codellama-7b-humaneval-java-fim results: [] library_name: peft --- # codellama-7b-humaneval-java-fim This model was trained from scratch on an [this](https://huggingface.co./datasets/sarthak247/humaneval-java-fixed) dataset for FIM task. It achieves the following results on the evaluation set: - Loss: 0.6155 ## Model description Codellama-7b model trained for FIM on Java code dataset. ## Intended uses & limitations Bleh ## Training and evaluation data Dataset mentioned above ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6594 | 0.05 | 100 | 0.6927 | | 0.6701 | 0.1 | 200 | 0.6784 | | 0.6329 | 0.15 | 300 | 0.6690 | | 0.6361 | 0.2 | 400 | 0.6629 | | 0.5964 | 0.25 | 500 | 0.6545 | | 0.6247 | 0.3 | 600 | 0.6461 | | 0.6146 | 0.35 | 700 | 0.6407 | | 0.5892 | 0.4 | 800 | 0.6364 | | 0.5916 | 0.45 | 900 | 0.6308 | | 0.6069 | 0.5 | 1000 | 0.6267 | | 0.5804 | 0.55 | 1100 | 0.6242 | | 0.5793 | 0.6 | 1200 | 0.6212 | | 0.5836 | 0.65 | 1300 | 0.6195 | | 0.5839 | 0.7 | 1400 | 0.6174 | | 0.597 | 0.75 | 1500 | 0.6162 | | 0.6042 | 0.8 | 1600 | 0.6158 | | 0.5777 | 0.85 | 1700 | 0.6155 | | 0.5683 | 0.9 | 1800 | 0.6155 | | 0.5613 | 0.95 | 1900 | 0.6155 | | 0.5597 | 1.0 | 2000 | 0.6155 | ### Framework versions - PEFT 0.5.0 - Transformers 4.34.0 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.14.1