--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-turkish-sentiment-analysis results: [] language: - tr datasets: - winvoker/turkish-sentiment-analysis-dataset widget: - text: "Sana aşığım" --- # bert-base-turkish-sentiment-analysis This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co./dbmdz/bert-base-turkish-cased) on an winvoker/turkish-sentiment-analysis-dataset (The shuffle function was used with a training dataset of 10,000 data points and a test dataset of 2,000 points.). It achieves the following results on the evaluation set: - Loss: 0.2458 - Accuracy: 0.962 ## Model description Fine-Tuning Process : https://github.com/saribasmetehan/Transformers-Library/blob/main/Turkish_Text_Classifiaction_Fine_Tuning_PyTorch.ipynb ## Example ```markdown from transformers import pipeline text = "senden nefret ediyorum" model_id = "saribasmetehan/bert-base-turkish-sentiment-analysis" classifer = pipeline("text-classification",model = model_id) preds= classifer(text) print(preds) #[{'label': 'LABEL_2', 'score': 0.7510055303573608}] ``` # Load model directly ```markdown from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("saribasmetehan/bert-base-turkish-sentiment-analysis") model = AutoModelForSequenceClassification.from_pretrained("saribasmetehan/bert-base-turkish-sentiment-analysis") ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1902 | 1.0 | 625 | 0.1629 | 0.9575 | | 0.1064 | 2.0 | 1250 | 0.1790 | 0.96 | | 0.0631 | 3.0 | 1875 | 0.2358 | 0.96 | | 0.0146 | 4.0 | 2500 | 0.2458 | 0.962 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 bunu düzenleyip tekrar atar mısın