---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:453
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Introduction to blockchain technology.
sentences:
- Desarrollador de software con experiencia en APIs RESTful
- Graphic designer with Adobe Illustrator skills.
- Blockchain developer with smart contract experience.
- source_sentence: Advanced English for international business.
sentences:
- Sales executive fluent in English with international sales experience.
- Desarrollador de aplicaciones móviles con experiencia en Kotlin
- Nurse with pediatric care skills.
- source_sentence: Speech recognition technology fundamentals.
sentences:
- Front-end developer with advanced CSS and responsive web design skills.
- Speech recognition engineer with ASR system development skills.
- Doctor with radiology experience.
- source_sentence: Desarrollo de videojuegos con Godot
sentences:
- UX designer with web application design skills.
- Desarrollador de videojuegos con experiencia en Godot
- Profesor de arte con experiencia en escultura
- source_sentence: Data Analysis, Database Application, Statistical Analysis
sentences:
- Escritora, años de experiencia
- Machine learning engineer with neural network skills.
- ' Ingeniero en sistemas con experiencia en redes informáticas.'
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the dataset dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- dataset
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU-trained-model")
# Run inference
sentences = [
'Data Analysis, Database Application, Statistical Analysis',
' Ingeniero en sistemas con experiencia en redes informáticas.',
'Escritora, años de experiencia',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### dataset
* Dataset: dataset
* Size: 453 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Fundamentos de ingeniería de software
| Ingeniero de software con experiencia en principios de diseño de software
| Enfermera con experiencia en atención geriátrica
|
| Data science for healthcare applications.
| Data scientist with healthcare data analysis skills.
| Lawyer with criminal law experience.
|
| Programación orientada a objetos en Java.
| Ingeniero de software con experiencia en desarrollo backend con Java.
| Farmacéutico con habilidades en atención farmacéutica.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### dataset
* Dataset: dataset
* Size: 114 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | Microservices architecture and design.
| Software architect with microservices design and implementation skills.
| Literature professor with literary criticism experience.
|
| Developing VR applications with Unity.
| VR developer with Unity skills.
| Pharmacist with pharmaceutical care skills.
|
| Curso de desarrollo personal y habilidades de comunicación efectiva.
| Coach de vida con experiencia en desarrollo personal y habilidades de comunicación.
| Ingeniero ambiental con habilidades en gestión de residuos.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### All Hyperparameters