---
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:521
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Advanced TensorFlow and Keras for AI.
sentences:
- Data analyst with SPSS skills.
- Chef with creative cuisine skills.
- AI developer with TensorFlow and Keras experience.
- source_sentence: Curso de gestión de proyectos con Trello y Asana.
sentences:
- Desarrollador de videojuegos con experiencia en Unreal Engine
- Gerente de proyectos con habilidades en Trello y Asana.
- Ingeniero mecánico con habilidades en diseño de motores.
- source_sentence: Scientific research and academic writing.
sentences:
- Director de RRHH con habilidades en gestión estratégica y desarrollo organizacional.
- Chef with Italian cuisine skills.
- Academic researcher with scientific writing skills.
- source_sentence: Scientific computing with MATLAB.
sentences:
- Chef with creative cuisine skills.
- Describe the applications of computer vision across different industries. Apply
image processing and analysis techniques to computer vision problems.. Utilize
Python, Pillow, and OpenCV for basic image processing and perform image classification
and object detection.Create an image classifier using Supervised learning techniques.
- Engineer with MATLAB and numerical analysis skills.
- source_sentence: Embedded Systems Software Development.
sentences:
- Doctor with radiology experience.
- Software engineer with embedded systems skills.
- MLOps engineer with pipeline skills.
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- dataset
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU-trained-final-model")
# Run inference
sentences = [
'Embedded Systems Software Development.',
'Software engineer with embedded systems skills.',
'Doctor with radiology experience.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### dataset
* Dataset: dataset
* Size: 521 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Advanced physics: quantum theory and relativity.
| Physics researcher with quantum theory and relativistic mechanics experience.
| Music teacher with composition skills.
|
| Análisis económico y modelos de negocio.
| Consultor económico con experiencia en análisis de mercados y estrategias empresariales.
| Arquitecto con habilidades en diseño sostenible.
|
| Programación orientada a objetos en Java.
| Ingeniero de software con experiencia en desarrollo backend con Java.
| Farmacéutico con habilidades en atención farmacéutica.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### dataset
* Dataset: dataset
* Size: 131 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | TensorFlow for deep learning.
| AI researcher with TensorFlow and deep learning skills.
| Accountant with tax preparation skills.
|
| Desarrollo de videojuegos con Unreal Engine
| Desarrollador de videojuegos con experiencia en Unreal Engine
| Abogado con experiencia en litigios civiles
|
| Introducción al desarrollo de videojuegos con Unity
| Desarrollador de videojuegos con experiencia en Unity y C#
| Psicólogo con experiencia en terapia de pareja
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### All Hyperparameters