--- license: apache-2.0 tags: - generated_from_trainer datasets: - esnli metrics: - accuracy - f1 - rouge - bleu model-index: - name: google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b48 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: esnli type: esnli config: plain_text split: validation args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8622231253810201 - name: F1 type: f1 value: 0.8623314280769628 - name: Rouge1 type: rouge value: 0.605873896307076 - name: Bleu type: bleu value: 0.40472213589689604 --- # google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b48 This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the esnli dataset. It achieves the following results on the evaluation set: - Loss: 1.8720 - Accuracy: 0.8622 - F1: 0.8623 - Bertscore F1: 0.9329 - Rouge1: 0.6059 - Rouge2: 0.3988 - Rougel: 0.5475 - Rougelsum: 0.5496 - Bleu: 0.4047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bertscore F1 | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------------:|:------:|:------:|:------:|:---------:|:------:| | 1.5084 | 0.17 | 2000 | 1.7484 | 0.8001 | 0.7997 | 0.9271 | 0.5768 | 0.3695 | 0.5209 | 0.5229 | 0.3703 | | 1.2745 | 0.35 | 4000 | 1.8137 | 0.8113 | 0.8110 | 0.9304 | 0.5881 | 0.3804 | 0.5305 | 0.5325 | 0.3853 | | 1.2287 | 0.52 | 6000 | 1.8358 | 0.8392 | 0.8403 | 0.9298 | 0.5828 | 0.3747 | 0.5282 | 0.5301 | 0.3778 | | 1.1964 | 0.7 | 8000 | 1.8432 | 0.8430 | 0.8437 | 0.9326 | 0.5974 | 0.3905 | 0.5447 | 0.5462 | 0.3998 | | 1.1674 | 0.87 | 10000 | 1.8567 | 0.8507 | 0.8485 | 0.9310 | 0.5947 | 0.3888 | 0.5383 | 0.5402 | 0.3892 | | 1.1371 | 1.05 | 12000 | 1.8720 | 0.8622 | 0.8623 | 0.9329 | 0.6059 | 0.3988 | 0.5475 | 0.5496 | 0.4047 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2