Muhammad Saqib commited on
Commit
6a8bd16
1 Parent(s): 5ed958e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 236.31 +/- 45.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa8ce7e70a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa8ce7e7130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa8ce7e71c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa8ce7e7250>", "_build": "<function ActorCriticPolicy._build at 0x7fa8ce7e72e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa8ce7e7370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa8ce7e7400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa8ce7e7490>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa8ce7e7520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa8ce7e75b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa8ce7e7640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa8ce7e76d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa8ce78cfc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707218328898849958, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPx8L2QJ7M/4JwDv32xlL59oxi9JtxZvgAAAAAAAAAAmpl2PX9/ID/G1Pu9UmSvvtRQLT1LS2e9AAAAAAAAAAAzCbE8FLi2P1nrCD855xM+adpZvMUH+7wAAAAAAAAAAMrwmL6ccJC9Mqqyu+ouh7pyafQ++ok4OwAAgD8AAIA/Zi5hvEOcN7x73Lc7QeYDPbOMqr1lwdI9AACAPwAAgD/AUUm+INyBPgJ/rD7i+k2+bkZJPe1y2D0AAAAAAAAAAIAbJr12fCi8YIIXPfGwfL3BlzC9Lj9uPQAAgD8AAIA/glCCvg7Gtj5lUaA+80WQvskejT3rouQ8AAAAAAAAAAATLQM+R0gCPyCZIr6CC7m+yO5GPcg4G7wAAAAAAAAAAP3Ujb5NpE0/1p4wvhV1nb7sHYy+A4hJuwAAAAAAAAAAMxMpvYXA27tNehk9LfZOPR0bLr3X5Sc+AACAPwAAgD8a6449X7poPpoSer7BcSi+ZHOCvb4n2rsAAAAAAAAAAK14Eb68ZnE/aPrcvSJsy74OVsa9mo5KvQAAAAAAAAAAxgsJPqROaLt/Cxk7ji5KuWXOB72GTS26AACAPwAAgD8aD2S9UqjguZIJbLVtd2GwFsDvO9MVrzQAAIA/AACAPwCgwLs9vhq7lVVzvFabfDwm1Wm8TpRbPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKUVXV9Wp+MAWyUTWwBjAF0lEdAnRqEyHmA9XV9lChoBkdAcWKsr/bTMWgHTQoBaAhHQJ0bEy/KyOd1fZQoaAZHQG68OpKjBVNoB00kAWgIR0CdG7z0Yj0MdX2UKGgGR0ByenOX3QD3aAdNXQFoCEdAnRxZAyEcsHV9lChoBkdAb2+G+K0laGgHTRoBaAhHQJ0ed7WuoxZ1fZQoaAZHQG5Zi2+fywxoB00aAWgIR0CdHsaL4vexdX2UKGgGR0BxobTc6/7BaAdNNQFoCEdAnR+1He7+UHV9lChoBkdAcD2deY2KmGgHTRQBaAhHQJ0fxyHVPN51fZQoaAZHQHH2gHzH0btoB009AWgIR0CdH9lqJuVHdX2UKGgGR0BtX73mFJxvaAdNXwFoCEdAnR/r876pHnV9lChoBkdAcOCZsbedkWgHTTUBaAhHQJ0f98iOeat1fZQoaAZHQHIMMK1G9YhoB00kAWgIR0CdIHaqS5iFdX2UKGgGR0BwevVVghKUaAdNOgFoCEdAnSC9k8Rtg3V9lChoBkdAcV5NEPUaymgHTQoBaAhHQJ0imqWC2+h1fZQoaAZHQHDMaIacZtNoB00eAWgIR0CdItcSGrS3dX2UKGgGR0BGoXl0YCQtaAdL6GgIR0CdI6TA31jBdX2UKGgGR0BwnHRkVeruaAdNPgFoCEdAnSQEPxx1gnV9lChoBkdAcUuwwTM7l2gHTSQBaAhHQJ0k696C17Z1fZQoaAZHQHJ8eclPactoB01ZAWgIR0CdJjYekpI+dX2UKGgGR0BuLatDD0lJaAdNNQFoCEdAnSbjG96C2HV9lChoBkdAcdJCMxXXAmgHTRsBaAhHQJ0ofhn8Koh1fZQoaAZHQGvVqm8/UvxoB00lAWgIR0CdKJUG3WnTdX2UKGgGR0BxS1COWBz4aAdNBwFoCEdAnSizabnX/nV9lChoBkdAchlrleWv82gHTQcBaAhHQJ0o5KdxyXF1fZQoaAZHQG4jRz7uUlloB00cAWgIR0CdKZp2U0N0dX2UKGgGR0Bw3VDZ13dLaAdNKgFoCEdAnSqwntv4unV9lChoBkdAckNrEcbR4WgHTT4BaAhHQJ0qsV9F4LV1fZQoaAZHQHHkpgXuVopoB01OAWgIR0CdKxd+5OJtdX2UKGgGR0BwzJQGfPHDaAdNNgFoCEdAnStlHz6JqXV9lChoBkdAcXIYzBRAKWgHTRgBaAhHQJ0sUQL/jsF1fZQoaAZHQEdITDfm9xpoB0v0aAhHQJ0sks052hZ1fZQoaAZHQGxXifpUxVRoB00yAWgIR0CdLUvkRzzVdX2UKGgGR0BwHcikfs/qaAdNMwFoCEdAnS4kleF+NXV9lChoBkdAcsaN6PbO/2gHTSEBaAhHQJ0woI/qxC91fZQoaAZHQG9BldcB2fVoB00RAWgIR0CdML3Y+Sr6dX2UKGgGR0BxQQa0hNdraAdNUgFoCEdAnTFQ5WBBiXV9lChoBkdAcmggEU0vXmgHTRwBaAhHQJ0zSqioKlZ1fZQoaAZHQHBXI1xbSqloB00fAWgIR0CdNSiSaEzwdX2UKGgGR0Bwkspz90ihaAdNSgFoCEdAnTYvGVAzHnV9lChoBkdAcIC0se4kNWgHTUUBaAhHQJ02MRh+fAd1fZQoaAZHQHCmeo1k1/FoB01ZAWgIR0CdNtLzPKMedX2UKGgGR0By0b1Gsmv4aAdNKwFoCEdAnTd//FR51XV9lChoBkdAcXNk9ECvHWgHTSMBaAhHQJ04LikwevJ1fZQoaAZHQGvSyiM5wOxoB00+AWgIR0CdOFbCJoCddX2UKGgGR0Bu6ESCe2/jaAdNSgFoCEdAnTkdvXK8tnV9lChoBkdAcOpl7tzCDWgHTSgBaAhHQJ05VZdOZb91fZQoaAZHQHH5TCcf/3poB00lAWgIR0CdOXqIJqqPdX2UKGgGR0BvQ1RvWH1waAdNNwFoCEdAnU2jVQQ+U3V9lChoBkdAcVGCIUJv52gHTVsBaAhHQJ1N+94/u9h1fZQoaAZHQHJDrM5fdARoB00gAWgIR0CdTvFI/Z/TdX2UKGgGR0Bw+qMR6F/QaAdNNAFoCEdAnU+W6PKdQXV9lChoBkdAcQi39rGipWgHTTkBaAhHQJ1QQ4R28qZ1fZQoaAZHQGzuS5y2hIxoB00NAWgIR0CdUUZsKsuGdX2UKGgGR0Bur2yTpxFRaAdNMQFoCEdAnVFtyxRl6XV9lChoBkdAbeoWa+evp2gHTSEBaAhHQJ1SvftQbdd1fZQoaAZHQHGQ2QKa5PNoB00nAWgIR0CdU2iN83MqdX2UKGgGR0BwoALUkOZtaAdNCQFoCEdAnVOETlDF63V9lChoBkdAb48TJyQxOGgHTRsBaAhHQJ1T7x+az/p1fZQoaAZHQHIhLV8Ti85oB01FAWgIR0CdU/4C6pYLdX2UKGgGR0Bw5rJfYzzmaAdNAgFoCEdAnVQRgJC0GHV9lChoBkdAcpwEUj9n9WgHTToBaAhHQJ1UbrgOz6d1fZQoaAZHQHMNMXN1QqJoB00cAWgIR0CdVP717IDHdX2UKGgGR0BwSK+nIhhZaAdNJQFoCEdAnVVkRjBl+XV9lChoBkdAb53pZfUnX2gHTQgBaAhHQJ1X5PRArx11fZQoaAZHQHC226ClJpZoB00pAWgIR0CdWBwPiDNAdX2UKGgGR0Bwygdlum78aAdNQwFoCEdAnViytFKChHV9lChoBkdAcH9XhfjS5WgHTSEBaAhHQJ1ZcBFNL151fZQoaAZHQGw3ZooNNJxoB00qAWgIR0CdW6s3hn8LdX2UKGgGR0BsFsj1PFefaAdNKAFoCEdAnVu4I0IkaHV9lChoBkdAcVkyuZCv5mgHTUsBaAhHQJ1b4G/vfCR1fZQoaAZHQG4XWc8TzupoB00TAWgIR0CdXDKv3ai9dX2UKGgGR0BTJMD4gzP9aAdL/mgIR0CdXLUDuBtldX2UKGgGR0BwGiIAOrhjaAdNDwFoCEdAnVzJkwvg33V9lChoBkdAcSJ+yquKXWgHTQIBaAhHQJ1c60b961N1fZQoaAZHQGv5IKUmlZZoB00uAWgIR0CdXjNxlxwRdX2UKGgGR0Bxl1gqmTC+aAdNGAFoCEdAnV8scdYGMXV9lChoBkdAcnQwlByCF2gHTSoBaAhHQJ1fT4EfT1F1fZQoaAZHQHAq3I6r/85oB01jAWgIR0CdX3Es8PnTdX2UKGgGR0BxjNVn27FsaAdNXgFoCEdAnWBShJyyU3V9lChoBkdAbLchQFcIJWgHTRsBaAhHQJ1irtWuHN51fZQoaAZHQG7il7dBSk1oB00GAWgIR0CdY3qjafz0dX2UKGgGR0BwL9xkupS8aAdNHQFoCEdAnWOXS0BwM3V9lChoBkdAcZZy2hIvrWgHTR4BaAhHQJ1oHA0sOG11fZQoaAZHQHBBqa5PM0RoB00lAWgIR0CdaECUX531dX2UKGgGR0BxR4rSVnmJaAdNMwFoCEdAnWkqAavRq3V9lChoBkdAbUpcCYCyQmgHTRsBaAhHQJ1pZJ/XoTx1fZQoaAZHQHIup9uxbB5oB00iAWgIR0Cdaep/wy6+dX2UKGgGR0BslDGPxQSBaAdNUAFoCEdAnWrsRlHz6XV9lChoBkdAbUerPMSsbWgHTUcBaAhHQJ1rPAj6eoV1fZQoaAZHQHI/Zz90ihZoB00HAWgIR0Cda4j4pMHsdX2UKGgGR0ByGwnhKlHjaAdNJwFoCEdAnWuhciW3SnV9lChoBkdAbf/q8lHBlGgHTUIBaAhHQJ1tleUpuuR1fZQoaAZHQG6Us0YTCchoB00jAWgIR0CdbZ8fV7QcdX2UKGgGR0BwauaBqbjMaAdNQQFoCEdAnW2yGvfTC3V9lChoBkdAcBwOzposZ2gHTSQBaAhHQJ1v8Tg2qDN1fZQoaAZHQHJrIQBgeBBoB00lAWgIR0CdcBE8q4H5dX2UKGgGR0Bwm4MKCxu9aAdNWwFoCEdAnXF0voNd7nV9lChoBkdASmHSWqtHQWgHS+hoCEdAnXGK94/u9nV9lChoBkdAciDGWUr08WgHTSIBaAhHQJ1zN9Brvb51fZQoaAZHQHGFtDx9XtBoB00QAWgIR0Cdc/QyhzvJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79109a7c0735600900e41dd844c62c1d1c58da7f5cec2ab095517e297815c7b9
3
+ size 148064
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa8ce7e70a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa8ce7e7130>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa8ce7e71c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa8ce7e7250>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa8ce7e72e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa8ce7e7370>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa8ce7e7400>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa8ce7e7490>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa8ce7e7520>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa8ce7e75b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa8ce7e7640>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa8ce7e76d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa8ce78cfc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1707218328898849958,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPx8L2QJ7M/4JwDv32xlL59oxi9JtxZvgAAAAAAAAAAmpl2PX9/ID/G1Pu9UmSvvtRQLT1LS2e9AAAAAAAAAAAzCbE8FLi2P1nrCD855xM+adpZvMUH+7wAAAAAAAAAAMrwmL6ccJC9Mqqyu+ouh7pyafQ++ok4OwAAgD8AAIA/Zi5hvEOcN7x73Lc7QeYDPbOMqr1lwdI9AACAPwAAgD/AUUm+INyBPgJ/rD7i+k2+bkZJPe1y2D0AAAAAAAAAAIAbJr12fCi8YIIXPfGwfL3BlzC9Lj9uPQAAgD8AAIA/glCCvg7Gtj5lUaA+80WQvskejT3rouQ8AAAAAAAAAAATLQM+R0gCPyCZIr6CC7m+yO5GPcg4G7wAAAAAAAAAAP3Ujb5NpE0/1p4wvhV1nb7sHYy+A4hJuwAAAAAAAAAAMxMpvYXA27tNehk9LfZOPR0bLr3X5Sc+AACAPwAAgD8a6449X7poPpoSer7BcSi+ZHOCvb4n2rsAAAAAAAAAAK14Eb68ZnE/aPrcvSJsy74OVsa9mo5KvQAAAAAAAAAAxgsJPqROaLt/Cxk7ji5KuWXOB72GTS26AACAPwAAgD8aD2S9UqjguZIJbLVtd2GwFsDvO9MVrzQAAIA/AACAPwCgwLs9vhq7lVVzvFabfDwm1Wm8TpRbPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKUVXV9Wp+MAWyUTWwBjAF0lEdAnRqEyHmA9XV9lChoBkdAcWKsr/bTMWgHTQoBaAhHQJ0bEy/KyOd1fZQoaAZHQG68OpKjBVNoB00kAWgIR0CdG7z0Yj0MdX2UKGgGR0ByenOX3QD3aAdNXQFoCEdAnRxZAyEcsHV9lChoBkdAb2+G+K0laGgHTRoBaAhHQJ0ed7WuoxZ1fZQoaAZHQG5Zi2+fywxoB00aAWgIR0CdHsaL4vexdX2UKGgGR0BxobTc6/7BaAdNNQFoCEdAnR+1He7+UHV9lChoBkdAcD2deY2KmGgHTRQBaAhHQJ0fxyHVPN51fZQoaAZHQHH2gHzH0btoB009AWgIR0CdH9lqJuVHdX2UKGgGR0BtX73mFJxvaAdNXwFoCEdAnR/r876pHnV9lChoBkdAcOCZsbedkWgHTTUBaAhHQJ0f98iOeat1fZQoaAZHQHIMMK1G9YhoB00kAWgIR0CdIHaqS5iFdX2UKGgGR0BwevVVghKUaAdNOgFoCEdAnSC9k8Rtg3V9lChoBkdAcV5NEPUaymgHTQoBaAhHQJ0imqWC2+h1fZQoaAZHQHDMaIacZtNoB00eAWgIR0CdItcSGrS3dX2UKGgGR0BGoXl0YCQtaAdL6GgIR0CdI6TA31jBdX2UKGgGR0BwnHRkVeruaAdNPgFoCEdAnSQEPxx1gnV9lChoBkdAcUuwwTM7l2gHTSQBaAhHQJ0k696C17Z1fZQoaAZHQHJ8eclPactoB01ZAWgIR0CdJjYekpI+dX2UKGgGR0BuLatDD0lJaAdNNQFoCEdAnSbjG96C2HV9lChoBkdAcdJCMxXXAmgHTRsBaAhHQJ0ofhn8Koh1fZQoaAZHQGvVqm8/UvxoB00lAWgIR0CdKJUG3WnTdX2UKGgGR0BxS1COWBz4aAdNBwFoCEdAnSizabnX/nV9lChoBkdAchlrleWv82gHTQcBaAhHQJ0o5KdxyXF1fZQoaAZHQG4jRz7uUlloB00cAWgIR0CdKZp2U0N0dX2UKGgGR0Bw3VDZ13dLaAdNKgFoCEdAnSqwntv4unV9lChoBkdAckNrEcbR4WgHTT4BaAhHQJ0qsV9F4LV1fZQoaAZHQHHkpgXuVopoB01OAWgIR0CdKxd+5OJtdX2UKGgGR0BwzJQGfPHDaAdNNgFoCEdAnStlHz6JqXV9lChoBkdAcXIYzBRAKWgHTRgBaAhHQJ0sUQL/jsF1fZQoaAZHQEdITDfm9xpoB0v0aAhHQJ0sks052hZ1fZQoaAZHQGxXifpUxVRoB00yAWgIR0CdLUvkRzzVdX2UKGgGR0BwHcikfs/qaAdNMwFoCEdAnS4kleF+NXV9lChoBkdAcsaN6PbO/2gHTSEBaAhHQJ0woI/qxC91fZQoaAZHQG9BldcB2fVoB00RAWgIR0CdML3Y+Sr6dX2UKGgGR0BxQQa0hNdraAdNUgFoCEdAnTFQ5WBBiXV9lChoBkdAcmggEU0vXmgHTRwBaAhHQJ0zSqioKlZ1fZQoaAZHQHBXI1xbSqloB00fAWgIR0CdNSiSaEzwdX2UKGgGR0Bwkspz90ihaAdNSgFoCEdAnTYvGVAzHnV9lChoBkdAcIC0se4kNWgHTUUBaAhHQJ02MRh+fAd1fZQoaAZHQHCmeo1k1/FoB01ZAWgIR0CdNtLzPKMedX2UKGgGR0By0b1Gsmv4aAdNKwFoCEdAnTd//FR51XV9lChoBkdAcXNk9ECvHWgHTSMBaAhHQJ04LikwevJ1fZQoaAZHQGvSyiM5wOxoB00+AWgIR0CdOFbCJoCddX2UKGgGR0Bu6ESCe2/jaAdNSgFoCEdAnTkdvXK8tnV9lChoBkdAcOpl7tzCDWgHTSgBaAhHQJ05VZdOZb91fZQoaAZHQHH5TCcf/3poB00lAWgIR0CdOXqIJqqPdX2UKGgGR0BvQ1RvWH1waAdNNwFoCEdAnU2jVQQ+U3V9lChoBkdAcVGCIUJv52gHTVsBaAhHQJ1N+94/u9h1fZQoaAZHQHJDrM5fdARoB00gAWgIR0CdTvFI/Z/TdX2UKGgGR0Bw+qMR6F/QaAdNNAFoCEdAnU+W6PKdQXV9lChoBkdAcQi39rGipWgHTTkBaAhHQJ1QQ4R28qZ1fZQoaAZHQGzuS5y2hIxoB00NAWgIR0CdUUZsKsuGdX2UKGgGR0Bur2yTpxFRaAdNMQFoCEdAnVFtyxRl6XV9lChoBkdAbeoWa+evp2gHTSEBaAhHQJ1SvftQbdd1fZQoaAZHQHGQ2QKa5PNoB00nAWgIR0CdU2iN83MqdX2UKGgGR0BwoALUkOZtaAdNCQFoCEdAnVOETlDF63V9lChoBkdAb48TJyQxOGgHTRsBaAhHQJ1T7x+az/p1fZQoaAZHQHIhLV8Ti85oB01FAWgIR0CdU/4C6pYLdX2UKGgGR0Bw5rJfYzzmaAdNAgFoCEdAnVQRgJC0GHV9lChoBkdAcpwEUj9n9WgHTToBaAhHQJ1UbrgOz6d1fZQoaAZHQHMNMXN1QqJoB00cAWgIR0CdVP717IDHdX2UKGgGR0BwSK+nIhhZaAdNJQFoCEdAnVVkRjBl+XV9lChoBkdAb53pZfUnX2gHTQgBaAhHQJ1X5PRArx11fZQoaAZHQHC226ClJpZoB00pAWgIR0CdWBwPiDNAdX2UKGgGR0Bwygdlum78aAdNQwFoCEdAnViytFKChHV9lChoBkdAcH9XhfjS5WgHTSEBaAhHQJ1ZcBFNL151fZQoaAZHQGw3ZooNNJxoB00qAWgIR0CdW6s3hn8LdX2UKGgGR0BsFsj1PFefaAdNKAFoCEdAnVu4I0IkaHV9lChoBkdAcVkyuZCv5mgHTUsBaAhHQJ1b4G/vfCR1fZQoaAZHQG4XWc8TzupoB00TAWgIR0CdXDKv3ai9dX2UKGgGR0BTJMD4gzP9aAdL/mgIR0CdXLUDuBtldX2UKGgGR0BwGiIAOrhjaAdNDwFoCEdAnVzJkwvg33V9lChoBkdAcSJ+yquKXWgHTQIBaAhHQJ1c60b961N1fZQoaAZHQGv5IKUmlZZoB00uAWgIR0CdXjNxlxwRdX2UKGgGR0Bxl1gqmTC+aAdNGAFoCEdAnV8scdYGMXV9lChoBkdAcnQwlByCF2gHTSoBaAhHQJ1fT4EfT1F1fZQoaAZHQHAq3I6r/85oB01jAWgIR0CdX3Es8PnTdX2UKGgGR0BxjNVn27FsaAdNXgFoCEdAnWBShJyyU3V9lChoBkdAbLchQFcIJWgHTRsBaAhHQJ1irtWuHN51fZQoaAZHQG7il7dBSk1oB00GAWgIR0CdY3qjafz0dX2UKGgGR0BwL9xkupS8aAdNHQFoCEdAnWOXS0BwM3V9lChoBkdAcZZy2hIvrWgHTR4BaAhHQJ1oHA0sOG11fZQoaAZHQHBBqa5PM0RoB00lAWgIR0CdaECUX531dX2UKGgGR0BxR4rSVnmJaAdNMwFoCEdAnWkqAavRq3V9lChoBkdAbUpcCYCyQmgHTRsBaAhHQJ1pZJ/XoTx1fZQoaAZHQHIup9uxbB5oB00iAWgIR0Cdaep/wy6+dX2UKGgGR0BslDGPxQSBaAdNUAFoCEdAnWrsRlHz6XV9lChoBkdAbUerPMSsbWgHTUcBaAhHQJ1rPAj6eoV1fZQoaAZHQHI/Zz90ihZoB00HAWgIR0Cda4j4pMHsdX2UKGgGR0ByGwnhKlHjaAdNJwFoCEdAnWuhciW3SnV9lChoBkdAbf/q8lHBlGgHTUIBaAhHQJ1tleUpuuR1fZQoaAZHQG6Us0YTCchoB00jAWgIR0CdbZ8fV7QcdX2UKGgGR0BwauaBqbjMaAdNQQFoCEdAnW2yGvfTC3V9lChoBkdAcBwOzposZ2gHTSQBaAhHQJ1v8Tg2qDN1fZQoaAZHQHJrIQBgeBBoB00lAWgIR0CdcBE8q4H5dX2UKGgGR0Bwm4MKCxu9aAdNWwFoCEdAnXF0voNd7nV9lChoBkdASmHSWqtHQWgHS+hoCEdAnXGK94/u9nV9lChoBkdAciDGWUr08WgHTSIBaAhHQJ1zN9Brvb51fZQoaAZHQHGFtDx9XtBoB00QAWgIR0Cdc/QyhzvJdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68df5405275edec820364239c6ed23211e7080c55188981d21a370b1efbba643
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0bf715bcc526ed0e241846b4aced46ce7f296fb286410214c1b610cb867e187
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 236.31410390000002, "std_reward": 45.057970551578634, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-06T11:49:16.376708"}