--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: UDA-LIDI-Whisper-large-v3-ECU-911 results: [] --- # UDA-LIDI-Whisper-large-v3-ECU-911 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8777 - Wer: 37.9051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6583 | 1.0 | 91 | 0.5713 | 39.8617 | | 0.3725 | 2.0 | 182 | 0.5667 | 37.7866 | | 0.2317 | 3.0 | 273 | 0.6098 | 37.6285 | | 0.1397 | 4.0 | 364 | 0.6432 | 37.1937 | | 0.0841 | 5.0 | 455 | 0.7177 | 39.4466 | | 0.0539 | 6.0 | 546 | 0.7817 | 39.1700 | | 0.036 | 7.0 | 637 | 0.8725 | 38.7747 | | 0.0281 | 8.0 | 728 | 0.8485 | 39.6245 | | 0.0228 | 9.0 | 819 | 0.8553 | 37.9051 | | 0.0181 | 9.8950 | 900 | 0.8777 | 37.9051 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0