--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: openai/whisper-large-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: mn split: test args: mn metrics: - name: Wer type: wer value: 41.048913043478265 --- # openai/whisper-large-v3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5425 - Wer: 41.0489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1378 | 4.35 | 500 | 0.5576 | 51.2554 | | 0.0024 | 8.7 | 1000 | 0.5425 | 41.0489 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0