Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
import librosa
|
4 |
+
from datasets import load_dataset, load_metric
|
5 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
6 |
+
|
7 |
+
LANG_ID = "fa"
|
8 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
|
9 |
+
DEVICE = "cuda"
|
10 |
+
|
11 |
+
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
12 |
+
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
13 |
+
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
14 |
+
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
15 |
+
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
16 |
+
|
17 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
18 |
+
|
19 |
+
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
20 |
+
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
21 |
+
|
22 |
+
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
23 |
+
|
24 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
25 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
26 |
+
model.to(DEVICE)
|
27 |
+
|
28 |
+
# Preprocessing the datasets.
|
29 |
+
# We need to read the audio files as arrays
|
30 |
+
def speech_file_to_array_fn(batch):
|
31 |
+
with warnings.catch_warnings():
|
32 |
+
warnings.simplefilter("ignore")
|
33 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
34 |
+
batch["speech"] = speech_array
|
35 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
|
36 |
+
return batch
|
37 |
+
|
38 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
39 |
+
|
40 |
+
# Preprocessing the datasets.
|
41 |
+
# We need to read the audio files as arrays
|
42 |
+
def evaluate(batch):
|
43 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
47 |
+
|
48 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
49 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
50 |
+
return batch
|
51 |
+
|
52 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
53 |
+
|
54 |
+
predictions = [x.upper() for x in result["pred_strings"]]
|
55 |
+
references = [x.upper() for x in result["sentence"]]
|
56 |
+
|
57 |
+
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
58 |
+
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|