--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Shiry/ATC_combined metrics: - wer model-index: - name: Whisper Small ATC - ATCText results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ATC type: Shiry/ATC_combined args: 'split: test' metrics: - name: Wer type: wer value: 10.612930650580948 --- # Whisper Small ATC - ATCText This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the ATC dataset. It achieves the following results on the evaluation set: - Loss: 0.2486 - Wer: 10.6129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2533 | 0.42 | 1000 | 0.3465 | 16.2868 | | 0.235 | 0.84 | 2000 | 0.2881 | 13.5237 | | 0.0851 | 1.27 | 3000 | 0.2607 | 10.6048 | | 0.1317 | 1.69 | 4000 | 0.2486 | 10.6129 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2 ### Additional Information ## Licensing Information The licensing status of the dataset hinges on the legal status of the UWB-ATCC corpus creators. They used Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) licensing. ## Citation Information Contributors who prepared, processed, normalized and uploaded the dataset in HuggingFace: @article{zuluaga2022how, title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } @article{zuluaga2022bertraffic, title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } @article{zuluaga2022atco2, title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others}, journal={arXiv preprint arXiv:2211.04054}, year={2022} } ## Authors of the dataset: @article{vsmidl2019air, title={Air traffic control communication (ATCC) speech corpora and their use for ASR and TTS development}, author={{\v{S}}m{\'\i}dl, Lubo{\v{s}} and {\v{S}}vec, Jan and Tihelka, Daniel and Matou{\v{s}}ek, Jind{\v{r}}ich and Romportl, Jan and Ircing, Pavel}, journal={Language Resources and Evaluation}, volume={53}, number={3}, pages={449--464}, year={2019}, publisher={Springer} }