--- base_model: google-t5/t5-small datasets: - Andyrasika/TweetSumm-tuned library_name: peft license: apache-2.0 metrics: - rouge - f1 - precision - recall tags: - generated_from_trainer model-index: - name: t5-small-LoRA-TweetSumm-1724701402 results: - task: type: summarization name: Summarization dataset: name: Andyrasika/TweetSumm-tuned type: Andyrasika/TweetSumm-tuned metrics: - type: rouge value: 0.4387 name: Rouge1 - type: f1 value: 0.8896 name: F1 - type: precision value: 0.8881 name: Precision - type: recall value: 0.8913 name: Recall --- # t5-small-LoRA-TweetSumm-1724701402 This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co./google-t5/t5-small) on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set: - Loss: 2.0811 - Rouge1: 0.4387 - Rouge2: 0.196 - Rougel: 0.3605 - Rougelsum: 0.4055 - Gen Len: 49.5909 - F1: 0.8896 - Precision: 0.8881 - Recall: 0.8913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| | 2.3972 | 1.0 | 110 | 2.1384 | 0.4219 | 0.1801 | 0.3545 | 0.3925 | 49.9818 | 0.8833 | 0.8806 | 0.8861 | | 2.2593 | 2.0 | 220 | 2.0982 | 0.4125 | 0.1843 | 0.3448 | 0.3837 | 49.9091 | 0.8853 | 0.8822 | 0.8886 | | 1.9318 | 3.0 | 330 | 2.0811 | 0.4387 | 0.196 | 0.3605 | 0.4055 | 49.5909 | 0.8896 | 0.8881 | 0.8913 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1