File size: 1,225 Bytes
230721d fe41e2d 230721d 9914232 fe41e2d b89dc8f 230721d fe41e2d 230721d fe41e2d 230721d b89dc8f 9914232 230721d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
language: "en"
thumbnail: "https://huggingface.co./sampathkethineedi"
tags:
- distilbert
- pytorch
- tensorflow
- text-classification
- industry
- buisiness
- description
- multi-class
- classification
liscence: "mit"
inference: false
---
# industry-classification
## Model description
DistilBERT Model to classify a business description into one of **62 industry tags**.
Trained on 7000 samples of Business Descriptions and associated labels of companies in India.
## How to use
PyTorch and TF models available
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
tokenizer = AutoTokenizer.from_pretrained("sampathkethineedi/industry-classification")
model = AutoModelForSequenceClassification.from_pretrained("sampathkethineedi/industry-classification")
industry_tags = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
industry_tags("Stellar Capital Services Limited is an India-based non-banking financial company ... loan against property, management consultancy, personal loans and unsecured loans.")
'''Ouput'''
[{'label': 'Consumer Finance', 'score': 0.9841355681419373}]
```
## Limitations and bias
Training data is only for Indian companies
|