File size: 4,238 Bytes
b253da0 1a7590a b253da0 f692779 b253da0 f692779 b253da0 f692779 b253da0 f692779 b253da0 f7d585c 11929a1 f7d585c b253da0 f7d585c b253da0 f7d585c b253da0 f7d585c b253da0 f7d585c b253da0 f7d585c b253da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
language:
- fi
license: apache-2.0
tags:
- automatic-speech-recognition
- fi
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: sammy786/wav2vec2-xlsr-finnish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: fi
metrics:
- name: Test WER
type: wer
value: 13.72
- name: Test CER
type: cer
value: 2.35
---
# sammy786/wav2vec2-xlsr-finnish
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co./facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - fi dataset.
It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets):
- Loss: 8.7555
- Wer: 23.0231
## Model description
"facebook/wav2vec2-xls-r-1b" was finetuned.
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data -
Common voice Finnish train.tsv, dev.tsv, invalidated.tsv and other.tsv
## Training procedure
For creating the train dataset, all possible datasets were appended and 90-10 split was used.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000045637994662983496
- train_batch_size: 8
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Step | Training Loss | Validation Loss | Wer |
|:----:|:-------------:|:---------------:|:--------:|
| 200 | 4.253700 | 0.881733 | 0.967007 |
| 400 | 0.864800 | 0.226977 | 0.420836 |
| 600 | 0.607000 | 0.157473 | 0.343375 |
| 800 | 0.380200 | 0.145640 | 0.302672 |
| 1000 | 0.318400 | 0.128028 | 0.293886 |
| 1200 | 0.261100 | 0.121414 | 0.289941 |
| 1400 | 0.232300 | 0.113451 | 0.279182 |
| 1600 | 0.216600 | 0.113649 | 0.282948 |
| 1800 | 0.202500 | 0.112375 | 0.276134 |
| 2000 | 0.190000 | 0.105725 | 0.273803 |
| 2200 | 0.171000 | 0.109715 | 0.270755 |
| 2400 | 0.156500 | 0.105042 | 0.264300 |
| 2600 | 0.155600 | 0.108337 | 0.260714 |
| 2800 | 0.149100 | 0.112435 | 0.263583 |
| 3000 | 0.145100 | 0.106193 | 0.261969 |
| 3200 | 0.131700 | 0.102860 | 0.251210 |
| 3400 | 0.129100 | 0.096058 | 0.246907 |
| 3600 | 0.121600 | 0.099932 | 0.246369 |
| 3800 | 0.112000 | 0.099041 | 0.244397 |
| 4000 | 0.114100 | 0.101566 | 0.242604 |
| 4200 | 0.111500 | 0.089498 | 0.239197 |
| 4400 | 0.099800 | 0.092835 | 0.240990 |
| 4600 | 0.095300 | 0.093518 | 0.238121 |
| 4800 | 0.094300 | 0.090783 | 0.240631 |
| 5000 | 0.089000 | 0.094046 | 0.238479 |
| 5200 | 0.088000 | 0.089342 | 0.235252 |
| 5400 | 0.083600 | 0.087770 | 0.234535 |
| 5600 | 0.083600 | 0.088804 | 0.234355 |
| 5800 | 0.080300 | 0.090168 | 0.231307 |
| 6000 | 0.078100 | 0.090163 | 0.230949 |
| 6200 | 0.075600 | 0.088876 | 0.232383 |
| 6400 | 0.078700 | 0.087235 | 0.232024 |
| 6600 | 0.074800 | 0.086825 | 0.231486 |
| 6800 | 0.076400 | 0.087308 | 0.231845 |
| 7000 | 0.070700 | 0.087695 | 0.230769 |
| 7200 | 0.075500 | 0.087555 | 0.230231 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id sammy786/wav2vec2-xlsr-finnish --dataset mozilla-foundation/common_voice_8_0 --config fi --split test
``` |