mini handler
Browse files- handler.py +28 -0
- requirements.txt +11 -0
handler.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from peft import PeftModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class EndpointHandler:
|
7 |
+
def __init__(self, path="unsloth/Meta-Llama-3.1-8B-bnb-4bit"):
|
8 |
+
# Load model and tokenizer
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
+
base_model = AutoModelForCausalLM.from_pretrained(path)
|
11 |
+
self.model = PeftModel.from_pretrained(base_model, path)
|
12 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
self.model.to(self.device)
|
14 |
+
|
15 |
+
def __call__(self, data):
|
16 |
+
# Extract input text
|
17 |
+
input_text = data.get("inputs", {}).get("text", "")
|
18 |
+
|
19 |
+
# Tokenize input text
|
20 |
+
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device)
|
21 |
+
|
22 |
+
# Generate output
|
23 |
+
output_tokens = self.model.generate(inputs["input_ids"], max_length=1024)
|
24 |
+
|
25 |
+
# Decode generated tokens
|
26 |
+
generated_text = self.tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
return {"generated_text": generated_text}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
torchvision
|
3 |
+
transformers>=4.25.0
|
4 |
+
unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git
|
5 |
+
xformers==0.0.27
|
6 |
+
trl
|
7 |
+
peft
|
8 |
+
accelerate
|
9 |
+
bitsandbytes
|
10 |
+
triton
|
11 |
+
wandb
|