sam2ai commited on
Commit
c7e469e
·
verified ·
1 Parent(s): d6a6779

Upload folder using huggingface_hub

Browse files
Files changed (46) hide show
  1. .gitattributes +2 -0
  2. README.md +73 -0
  3. all_results.json +12 -0
  4. checkpoint-19/config.json +30 -0
  5. checkpoint-19/generation_config.json +9 -0
  6. checkpoint-19/global_step19/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-19/global_step19/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-19/global_step19/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-19/global_step19/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-19/global_step19/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-19/global_step19/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-19/global_step19/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-19/global_step19/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  14. checkpoint-19/global_step19/mp_rank_00_model_states.pt +3 -0
  15. checkpoint-19/latest +1 -0
  16. checkpoint-19/model.safetensors +3 -0
  17. checkpoint-19/rng_state_0.pth +3 -0
  18. checkpoint-19/rng_state_1.pth +3 -0
  19. checkpoint-19/rng_state_2.pth +3 -0
  20. checkpoint-19/rng_state_3.pth +3 -0
  21. checkpoint-19/rng_state_4.pth +3 -0
  22. checkpoint-19/rng_state_5.pth +3 -0
  23. checkpoint-19/rng_state_6.pth +3 -0
  24. checkpoint-19/rng_state_7.pth +3 -0
  25. checkpoint-19/scheduler.pt +3 -0
  26. checkpoint-19/special_tokens_map.json +23 -0
  27. checkpoint-19/tokenizer.json +3 -0
  28. checkpoint-19/tokenizer_config.json +204 -0
  29. checkpoint-19/trainer_state.json +238 -0
  30. checkpoint-19/training_args.bin +3 -0
  31. checkpoint-19/zero_to_fp32.py +674 -0
  32. config.json +30 -0
  33. eval_results.json +7 -0
  34. generation_config.json +9 -0
  35. model.safetensors +3 -0
  36. runs/Feb06_18-31-53_amd-G262-ZO0-00/events.out.tfevents.1738866822.amd-G262-ZO0-00.61747.0 +3 -0
  37. runs/Feb06_18-31-53_amd-G262-ZO0-00/events.out.tfevents.1738866881.amd-G262-ZO0-00.61747.1 +3 -0
  38. special_tokens_map.json +23 -0
  39. tokenizer.json +3 -0
  40. tokenizer_config.json +204 -0
  41. train_results.json +8 -0
  42. trainer_log.jsonl +29 -0
  43. trainer_state.json +247 -0
  44. training_args.bin +3 -0
  45. training_eval_loss.png +0 -0
  46. training_loss.png +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-19/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: reasoning-multilingual-R1-Llama-70B-train
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # reasoning-multilingual-R1-Llama-70B-train
18
+
19
+ This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the reasoning-multilingual-R1-Llama-70B-train dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5690
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 8
46
+ - total_train_batch_size: 8
47
+ - total_eval_batch_size: 8
48
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
+ - lr_scheduler_type: cosine
50
+ - lr_scheduler_warmup_ratio: 0.01
51
+ - num_epochs: 1.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss |
56
+ |:-------------:|:------:|:----:|:---------------:|
57
+ | 0.6972 | 0.1053 | 2 | 0.5688 |
58
+ | 0.6915 | 0.2105 | 4 | 0.5684 |
59
+ | 0.7911 | 0.3158 | 6 | 0.5687 |
60
+ | 0.7261 | 0.4211 | 8 | 0.5700 |
61
+ | 0.86 | 0.5263 | 10 | 0.5687 |
62
+ | 0.6903 | 0.6316 | 12 | 0.5691 |
63
+ | 0.5994 | 0.7368 | 14 | 0.5684 |
64
+ | 0.7792 | 0.8421 | 16 | 0.5696 |
65
+ | 0.7023 | 0.9474 | 18 | 0.5689 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.46.1
71
+ - Pytorch 2.6.0.dev20241113+rocm6.2
72
+ - Datasets 3.1.0
73
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.5690025091171265,
4
+ "eval_runtime": 0.2986,
5
+ "eval_samples_per_second": 6.697,
6
+ "eval_steps_per_second": 3.349,
7
+ "total_flos": 6341035089199104.0,
8
+ "train_loss": 0.7060548631768477,
9
+ "train_runtime": 53.6484,
10
+ "train_samples_per_second": 2.759,
11
+ "train_steps_per_second": 0.354
12
+ }
checkpoint-19/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
checkpoint-19/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.46.1"
9
+ }
checkpoint-19/global_step19/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29445bdc364a5997a0a26d1a205320006f0ca40d31a0dd7fb6f59f11fff4ab48
3
+ size 2665637808
checkpoint-19/global_step19/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:790404feebce213825abb1dd5f8bda8fbff5d6fda95a5c0a3b49ffc93005a30c
3
+ size 2665641008
checkpoint-19/global_step19/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:355561e653a80a6f6761bc1d11ed8fc21bae6ff1f13edf70ef09fa78946d1361
3
+ size 2665641072
checkpoint-19/global_step19/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e0ebf7a727fd2dc713bc87bdc1b19130172768a4d3059772fcf12a305148f1a
3
+ size 2665641008
checkpoint-19/global_step19/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f530c19c1642c9cffd24b650c221fd79dd9da7bfb496d71cc96ced37ab111fdd
3
+ size 2665640944
checkpoint-19/global_step19/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2fef97611dd4ecdf1617f29d2324913f416aed97246a944025582665ecf5113
3
+ size 2665641264
checkpoint-19/global_step19/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f9b14d2bcea6264476c79e016b51936f1f813a1d070f85eca1851ce5b4a18bf
3
+ size 2665640816
checkpoint-19/global_step19/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb4b2defe968f0e9db211643d9fe8a24c32b3032470d26373b7039e2d5477a82
3
+ size 2665637936
checkpoint-19/global_step19/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f46360aef548288443c4e361dbf1ef18f039bd56b0d0786136850c55362f264
3
+ size 3554269304
checkpoint-19/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step19
checkpoint-19/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ec08307e50d95b42fd6402ddccf7fdfa4156c9363a19e6312efd09cebc52b8
3
+ size 3554214752
checkpoint-19/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb1165242405b17b3d6a8186ae61b13dcb1faa5a54320bebd74ef8d71b964bf7
3
+ size 15984
checkpoint-19/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:562c262916c9997ec644c42fed9655ab28706b74fca20290ca921c4761d6a4b0
3
+ size 15984
checkpoint-19/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8d40f8118f513299624ded0a9bcf09778b961635615090409394d4f96f928f6
3
+ size 15984
checkpoint-19/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4391f924238a4cb855c4cbdc6d1a14954f785431c75997d05c7a4ee6615dae7
3
+ size 15984
checkpoint-19/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be7b19bb9543a16bf9f4cd96466ac581436f63070f5815f3a7ba57980608994f
3
+ size 15984
checkpoint-19/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97da4a1ede0a3e0f96411cacd5bfdf84d9355198f7aadc9bcb8be41122043f63
3
+ size 15984
checkpoint-19/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:544cb6421b975bd5d2b2360a4e666003794e6197ae654d2ad963cd6572a86ede
3
+ size 15984
checkpoint-19/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8d6eb32a23f3bef6262bbcb2eda724b2fd6f5e579969aa27c71a5971331722b
3
+ size 15984
checkpoint-19/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8019dcc30845879688d343ea0e3e2f6e1ed3d0f26585ba32e8c8519cee8a0837
3
+ size 1064
checkpoint-19/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-19/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02643f00207dfc5ed248992486bde04314c21dca556bf65ce520690962b8db63
3
+ size 11422965
checkpoint-19/tokenizer_config.json ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<|im_end|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "bos_token": "<|begin▁of▁sentence|>",
192
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
193
+ "clean_up_tokenization_spaces": false,
194
+ "eos_token": "<|im_end|>",
195
+ "legacy": true,
196
+ "model_max_length": 16384,
197
+ "pad_token": "<|end▁of▁sentence|>",
198
+ "padding_side": "right",
199
+ "sp_model_kwargs": {},
200
+ "split_special_tokens": false,
201
+ "tokenizer_class": "LlamaTokenizer",
202
+ "unk_token": null,
203
+ "use_default_system_prompt": false
204
+ }
checkpoint-19/trainer_state.json ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 2,
6
+ "global_step": 19,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05263157894736842,
13
+ "grad_norm": 11935214993408.0,
14
+ "learning_rate": 1e-05,
15
+ "loss": 0.7163,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.10526315789473684,
20
+ "grad_norm": 2096675946496.0,
21
+ "learning_rate": 9.924038765061042e-06,
22
+ "loss": 0.6972,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.10526315789473684,
27
+ "eval_loss": 0.5687638521194458,
28
+ "eval_runtime": 0.2981,
29
+ "eval_samples_per_second": 6.709,
30
+ "eval_steps_per_second": 3.354,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.15789473684210525,
35
+ "grad_norm": 7390838128640.0,
36
+ "learning_rate": 9.698463103929542e-06,
37
+ "loss": 0.7795,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.21052631578947367,
42
+ "grad_norm": 3194177454080.0,
43
+ "learning_rate": 9.330127018922195e-06,
44
+ "loss": 0.6915,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.21052631578947367,
49
+ "eval_loss": 0.5684303045272827,
50
+ "eval_runtime": 0.2966,
51
+ "eval_samples_per_second": 6.743,
52
+ "eval_steps_per_second": 3.371,
53
+ "step": 4
54
+ },
55
+ {
56
+ "epoch": 0.2631578947368421,
57
+ "grad_norm": 131253493760.0,
58
+ "learning_rate": 8.83022221559489e-06,
59
+ "loss": 0.6744,
60
+ "step": 5
61
+ },
62
+ {
63
+ "epoch": 0.3157894736842105,
64
+ "grad_norm": 491539005440.0,
65
+ "learning_rate": 8.213938048432697e-06,
66
+ "loss": 0.7911,
67
+ "step": 6
68
+ },
69
+ {
70
+ "epoch": 0.3157894736842105,
71
+ "eval_loss": 0.5686608552932739,
72
+ "eval_runtime": 0.2967,
73
+ "eval_samples_per_second": 6.742,
74
+ "eval_steps_per_second": 3.371,
75
+ "step": 6
76
+ },
77
+ {
78
+ "epoch": 0.3684210526315789,
79
+ "grad_norm": 235763302400.0,
80
+ "learning_rate": 7.500000000000001e-06,
81
+ "loss": 0.5594,
82
+ "step": 7
83
+ },
84
+ {
85
+ "epoch": 0.42105263157894735,
86
+ "grad_norm": 279532568576.0,
87
+ "learning_rate": 6.710100716628345e-06,
88
+ "loss": 0.7261,
89
+ "step": 8
90
+ },
91
+ {
92
+ "epoch": 0.42105263157894735,
93
+ "eval_loss": 0.5699889063835144,
94
+ "eval_runtime": 0.2966,
95
+ "eval_samples_per_second": 6.744,
96
+ "eval_steps_per_second": 3.372,
97
+ "step": 8
98
+ },
99
+ {
100
+ "epoch": 0.47368421052631576,
101
+ "grad_norm": 175990996992.0,
102
+ "learning_rate": 5.8682408883346535e-06,
103
+ "loss": 0.6122,
104
+ "step": 9
105
+ },
106
+ {
107
+ "epoch": 0.5263157894736842,
108
+ "grad_norm": 10130321047552.0,
109
+ "learning_rate": 5e-06,
110
+ "loss": 0.86,
111
+ "step": 10
112
+ },
113
+ {
114
+ "epoch": 0.5263157894736842,
115
+ "eval_loss": 0.568690836429596,
116
+ "eval_runtime": 0.2978,
117
+ "eval_samples_per_second": 6.715,
118
+ "eval_steps_per_second": 3.358,
119
+ "step": 10
120
+ },
121
+ {
122
+ "epoch": 0.5789473684210527,
123
+ "grad_norm": 3898177486848.0,
124
+ "learning_rate": 4.131759111665349e-06,
125
+ "loss": 0.7364,
126
+ "step": 11
127
+ },
128
+ {
129
+ "epoch": 0.631578947368421,
130
+ "grad_norm": 1318930219008.0,
131
+ "learning_rate": 3.289899283371657e-06,
132
+ "loss": 0.6903,
133
+ "step": 12
134
+ },
135
+ {
136
+ "epoch": 0.631578947368421,
137
+ "eval_loss": 0.5691469311714172,
138
+ "eval_runtime": 0.2973,
139
+ "eval_samples_per_second": 6.728,
140
+ "eval_steps_per_second": 3.364,
141
+ "step": 12
142
+ },
143
+ {
144
+ "epoch": 0.6842105263157895,
145
+ "grad_norm": 137136914432.0,
146
+ "learning_rate": 2.5000000000000015e-06,
147
+ "loss": 0.663,
148
+ "step": 13
149
+ },
150
+ {
151
+ "epoch": 0.7368421052631579,
152
+ "grad_norm": 1604217339904.0,
153
+ "learning_rate": 1.7860619515673034e-06,
154
+ "loss": 0.5994,
155
+ "step": 14
156
+ },
157
+ {
158
+ "epoch": 0.7368421052631579,
159
+ "eval_loss": 0.5684089064598083,
160
+ "eval_runtime": 0.2979,
161
+ "eval_samples_per_second": 6.714,
162
+ "eval_steps_per_second": 3.357,
163
+ "step": 14
164
+ },
165
+ {
166
+ "epoch": 0.7894736842105263,
167
+ "grad_norm": 73108439040.0,
168
+ "learning_rate": 1.1697777844051105e-06,
169
+ "loss": 0.7457,
170
+ "step": 15
171
+ },
172
+ {
173
+ "epoch": 0.8421052631578947,
174
+ "grad_norm": 361255075840.0,
175
+ "learning_rate": 6.698729810778065e-07,
176
+ "loss": 0.7792,
177
+ "step": 16
178
+ },
179
+ {
180
+ "epoch": 0.8421052631578947,
181
+ "eval_loss": 0.5695986747741699,
182
+ "eval_runtime": 0.2976,
183
+ "eval_samples_per_second": 6.72,
184
+ "eval_steps_per_second": 3.36,
185
+ "step": 16
186
+ },
187
+ {
188
+ "epoch": 0.8947368421052632,
189
+ "grad_norm": 222161354752.0,
190
+ "learning_rate": 3.015368960704584e-07,
191
+ "loss": 0.6121,
192
+ "step": 17
193
+ },
194
+ {
195
+ "epoch": 0.9473684210526315,
196
+ "grad_norm": 4849853267968.0,
197
+ "learning_rate": 7.59612349389599e-08,
198
+ "loss": 0.7023,
199
+ "step": 18
200
+ },
201
+ {
202
+ "epoch": 0.9473684210526315,
203
+ "eval_loss": 0.5688631534576416,
204
+ "eval_runtime": 0.298,
205
+ "eval_samples_per_second": 6.711,
206
+ "eval_steps_per_second": 3.355,
207
+ "step": 18
208
+ },
209
+ {
210
+ "epoch": 1.0,
211
+ "grad_norm": 994095661056.0,
212
+ "learning_rate": 0.0,
213
+ "loss": 0.7789,
214
+ "step": 19
215
+ }
216
+ ],
217
+ "logging_steps": 1,
218
+ "max_steps": 19,
219
+ "num_input_tokens_seen": 0,
220
+ "num_train_epochs": 1,
221
+ "save_steps": 19,
222
+ "stateful_callbacks": {
223
+ "TrainerControl": {
224
+ "args": {
225
+ "should_epoch_stop": false,
226
+ "should_evaluate": false,
227
+ "should_log": false,
228
+ "should_save": true,
229
+ "should_training_stop": true
230
+ },
231
+ "attributes": {}
232
+ }
233
+ },
234
+ "total_flos": 6341035089199104.0,
235
+ "train_batch_size": 1,
236
+ "trial_name": null,
237
+ "trial_params": null
238
+ }
checkpoint-19/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56d85de0559cf61ca94211b430a49a67f680bb75ce8ddeebe275a4f5596c3c43
3
+ size 7160
checkpoint-19/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.5690025091171265,
4
+ "eval_runtime": 0.2986,
5
+ "eval_samples_per_second": 6.697,
6
+ "eval_steps_per_second": 3.349
7
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.46.1"
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ec08307e50d95b42fd6402ddccf7fdfa4156c9363a19e6312efd09cebc52b8
3
+ size 3554214752
runs/Feb06_18-31-53_amd-G262-ZO0-00/events.out.tfevents.1738866822.amd-G262-ZO0-00.61747.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fddd4702f5caba5a7931e0e008b7b2db28662512eff9d5fe8e0a909b8a32eb8
3
+ size 12225
runs/Feb06_18-31-53_amd-G262-ZO0-00/events.out.tfevents.1738866881.amd-G262-ZO0-00.61747.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be90771fb0eb93ff8cf8a197c03c3bfed949a8d8b2b37e5bd41c7697d64045d7
3
+ size 354
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02643f00207dfc5ed248992486bde04314c21dca556bf65ce520690962b8db63
3
+ size 11422965
tokenizer_config.json ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<|im_end|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ }
190
+ },
191
+ "bos_token": "<|begin▁of▁sentence|>",
192
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}",
193
+ "clean_up_tokenization_spaces": false,
194
+ "eos_token": "<|im_end|>",
195
+ "legacy": true,
196
+ "model_max_length": 16384,
197
+ "pad_token": "<|end▁of▁sentence|>",
198
+ "padding_side": "right",
199
+ "sp_model_kwargs": {},
200
+ "split_special_tokens": false,
201
+ "tokenizer_class": "LlamaTokenizer",
202
+ "unk_token": null,
203
+ "use_default_system_prompt": false
204
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 6341035089199104.0,
4
+ "train_loss": 0.7060548631768477,
5
+ "train_runtime": 53.6484,
6
+ "train_samples_per_second": 2.759,
7
+ "train_steps_per_second": 0.354
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 19, "loss": 0.7163, "lr": 1e-05, "epoch": 0.05263157894736842, "percentage": 5.26, "elapsed_time": "0:00:06", "remaining_time": "0:01:53"}
2
+ {"current_steps": 2, "total_steps": 19, "loss": 0.6972, "lr": 9.924038765061042e-06, "epoch": 0.10526315789473684, "percentage": 10.53, "elapsed_time": "0:00:07", "remaining_time": "0:01:05"}
3
+ {"current_steps": 2, "total_steps": 19, "eval_loss": 0.5687638521194458, "epoch": 0.10526315789473684, "percentage": 10.53, "elapsed_time": "0:00:08", "remaining_time": "0:01:08"}
4
+ {"current_steps": 3, "total_steps": 19, "loss": 0.7795, "lr": 9.698463103929542e-06, "epoch": 0.15789473684210525, "percentage": 15.79, "elapsed_time": "0:00:09", "remaining_time": "0:00:50"}
5
+ {"current_steps": 4, "total_steps": 19, "loss": 0.6915, "lr": 9.330127018922195e-06, "epoch": 0.21052631578947367, "percentage": 21.05, "elapsed_time": "0:00:10", "remaining_time": "0:00:41"}
6
+ {"current_steps": 4, "total_steps": 19, "eval_loss": 0.5684303045272827, "epoch": 0.21052631578947367, "percentage": 21.05, "elapsed_time": "0:00:11", "remaining_time": "0:00:42"}
7
+ {"current_steps": 5, "total_steps": 19, "loss": 0.6744, "lr": 8.83022221559489e-06, "epoch": 0.2631578947368421, "percentage": 26.32, "elapsed_time": "0:00:12", "remaining_time": "0:00:35"}
8
+ {"current_steps": 6, "total_steps": 19, "loss": 0.7911, "lr": 8.213938048432697e-06, "epoch": 0.3157894736842105, "percentage": 31.58, "elapsed_time": "0:00:14", "remaining_time": "0:00:30"}
9
+ {"current_steps": 6, "total_steps": 19, "eval_loss": 0.5686608552932739, "epoch": 0.3157894736842105, "percentage": 31.58, "elapsed_time": "0:00:14", "remaining_time": "0:00:31"}
10
+ {"current_steps": 7, "total_steps": 19, "loss": 0.5594, "lr": 7.500000000000001e-06, "epoch": 0.3684210526315789, "percentage": 36.84, "elapsed_time": "0:00:15", "remaining_time": "0:00:27"}
11
+ {"current_steps": 8, "total_steps": 19, "loss": 0.7261, "lr": 6.710100716628345e-06, "epoch": 0.42105263157894735, "percentage": 42.11, "elapsed_time": "0:00:17", "remaining_time": "0:00:23"}
12
+ {"current_steps": 8, "total_steps": 19, "eval_loss": 0.5699889063835144, "epoch": 0.42105263157894735, "percentage": 42.11, "elapsed_time": "0:00:17", "remaining_time": "0:00:24"}
13
+ {"current_steps": 9, "total_steps": 19, "loss": 0.6122, "lr": 5.8682408883346535e-06, "epoch": 0.47368421052631576, "percentage": 47.37, "elapsed_time": "0:00:19", "remaining_time": "0:00:21"}
14
+ {"current_steps": 10, "total_steps": 19, "loss": 0.86, "lr": 5e-06, "epoch": 0.5263157894736842, "percentage": 52.63, "elapsed_time": "0:00:20", "remaining_time": "0:00:18"}
15
+ {"current_steps": 10, "total_steps": 19, "eval_loss": 0.568690836429596, "epoch": 0.5263157894736842, "percentage": 52.63, "elapsed_time": "0:00:20", "remaining_time": "0:00:18"}
16
+ {"current_steps": 11, "total_steps": 19, "loss": 0.7364, "lr": 4.131759111665349e-06, "epoch": 0.5789473684210527, "percentage": 57.89, "elapsed_time": "0:00:22", "remaining_time": "0:00:16"}
17
+ {"current_steps": 12, "total_steps": 19, "loss": 0.6903, "lr": 3.289899283371657e-06, "epoch": 0.631578947368421, "percentage": 63.16, "elapsed_time": "0:00:23", "remaining_time": "0:00:13"}
18
+ {"current_steps": 12, "total_steps": 19, "eval_loss": 0.5691469311714172, "epoch": 0.631578947368421, "percentage": 63.16, "elapsed_time": "0:00:24", "remaining_time": "0:00:14"}
19
+ {"current_steps": 13, "total_steps": 19, "loss": 0.663, "lr": 2.5000000000000015e-06, "epoch": 0.6842105263157895, "percentage": 68.42, "elapsed_time": "0:00:25", "remaining_time": "0:00:11"}
20
+ {"current_steps": 14, "total_steps": 19, "loss": 0.5994, "lr": 1.7860619515673034e-06, "epoch": 0.7368421052631579, "percentage": 73.68, "elapsed_time": "0:00:27", "remaining_time": "0:00:09"}
21
+ {"current_steps": 14, "total_steps": 19, "eval_loss": 0.5684089064598083, "epoch": 0.7368421052631579, "percentage": 73.68, "elapsed_time": "0:00:27", "remaining_time": "0:00:09"}
22
+ {"current_steps": 15, "total_steps": 19, "loss": 0.7457, "lr": 1.1697777844051105e-06, "epoch": 0.7894736842105263, "percentage": 78.95, "elapsed_time": "0:00:28", "remaining_time": "0:00:07"}
23
+ {"current_steps": 16, "total_steps": 19, "loss": 0.7792, "lr": 6.698729810778065e-07, "epoch": 0.8421052631578947, "percentage": 84.21, "elapsed_time": "0:00:30", "remaining_time": "0:00:05"}
24
+ {"current_steps": 16, "total_steps": 19, "eval_loss": 0.5695986747741699, "epoch": 0.8421052631578947, "percentage": 84.21, "elapsed_time": "0:00:30", "remaining_time": "0:00:05"}
25
+ {"current_steps": 17, "total_steps": 19, "loss": 0.6121, "lr": 3.015368960704584e-07, "epoch": 0.8947368421052632, "percentage": 89.47, "elapsed_time": "0:00:31", "remaining_time": "0:00:03"}
26
+ {"current_steps": 18, "total_steps": 19, "loss": 0.7023, "lr": 7.59612349389599e-08, "epoch": 0.9473684210526315, "percentage": 94.74, "elapsed_time": "0:00:33", "remaining_time": "0:00:01"}
27
+ {"current_steps": 18, "total_steps": 19, "eval_loss": 0.5688631534576416, "epoch": 0.9473684210526315, "percentage": 94.74, "elapsed_time": "0:00:33", "remaining_time": "0:00:01"}
28
+ {"current_steps": 19, "total_steps": 19, "loss": 0.7789, "lr": 0.0, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:00:35", "remaining_time": "0:00:00"}
29
+ {"current_steps": 19, "total_steps": 19, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:00:51", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 2,
6
+ "global_step": 19,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05263157894736842,
13
+ "grad_norm": 11935214993408.0,
14
+ "learning_rate": 1e-05,
15
+ "loss": 0.7163,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.10526315789473684,
20
+ "grad_norm": 2096675946496.0,
21
+ "learning_rate": 9.924038765061042e-06,
22
+ "loss": 0.6972,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.10526315789473684,
27
+ "eval_loss": 0.5687638521194458,
28
+ "eval_runtime": 0.2981,
29
+ "eval_samples_per_second": 6.709,
30
+ "eval_steps_per_second": 3.354,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.15789473684210525,
35
+ "grad_norm": 7390838128640.0,
36
+ "learning_rate": 9.698463103929542e-06,
37
+ "loss": 0.7795,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.21052631578947367,
42
+ "grad_norm": 3194177454080.0,
43
+ "learning_rate": 9.330127018922195e-06,
44
+ "loss": 0.6915,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.21052631578947367,
49
+ "eval_loss": 0.5684303045272827,
50
+ "eval_runtime": 0.2966,
51
+ "eval_samples_per_second": 6.743,
52
+ "eval_steps_per_second": 3.371,
53
+ "step": 4
54
+ },
55
+ {
56
+ "epoch": 0.2631578947368421,
57
+ "grad_norm": 131253493760.0,
58
+ "learning_rate": 8.83022221559489e-06,
59
+ "loss": 0.6744,
60
+ "step": 5
61
+ },
62
+ {
63
+ "epoch": 0.3157894736842105,
64
+ "grad_norm": 491539005440.0,
65
+ "learning_rate": 8.213938048432697e-06,
66
+ "loss": 0.7911,
67
+ "step": 6
68
+ },
69
+ {
70
+ "epoch": 0.3157894736842105,
71
+ "eval_loss": 0.5686608552932739,
72
+ "eval_runtime": 0.2967,
73
+ "eval_samples_per_second": 6.742,
74
+ "eval_steps_per_second": 3.371,
75
+ "step": 6
76
+ },
77
+ {
78
+ "epoch": 0.3684210526315789,
79
+ "grad_norm": 235763302400.0,
80
+ "learning_rate": 7.500000000000001e-06,
81
+ "loss": 0.5594,
82
+ "step": 7
83
+ },
84
+ {
85
+ "epoch": 0.42105263157894735,
86
+ "grad_norm": 279532568576.0,
87
+ "learning_rate": 6.710100716628345e-06,
88
+ "loss": 0.7261,
89
+ "step": 8
90
+ },
91
+ {
92
+ "epoch": 0.42105263157894735,
93
+ "eval_loss": 0.5699889063835144,
94
+ "eval_runtime": 0.2966,
95
+ "eval_samples_per_second": 6.744,
96
+ "eval_steps_per_second": 3.372,
97
+ "step": 8
98
+ },
99
+ {
100
+ "epoch": 0.47368421052631576,
101
+ "grad_norm": 175990996992.0,
102
+ "learning_rate": 5.8682408883346535e-06,
103
+ "loss": 0.6122,
104
+ "step": 9
105
+ },
106
+ {
107
+ "epoch": 0.5263157894736842,
108
+ "grad_norm": 10130321047552.0,
109
+ "learning_rate": 5e-06,
110
+ "loss": 0.86,
111
+ "step": 10
112
+ },
113
+ {
114
+ "epoch": 0.5263157894736842,
115
+ "eval_loss": 0.568690836429596,
116
+ "eval_runtime": 0.2978,
117
+ "eval_samples_per_second": 6.715,
118
+ "eval_steps_per_second": 3.358,
119
+ "step": 10
120
+ },
121
+ {
122
+ "epoch": 0.5789473684210527,
123
+ "grad_norm": 3898177486848.0,
124
+ "learning_rate": 4.131759111665349e-06,
125
+ "loss": 0.7364,
126
+ "step": 11
127
+ },
128
+ {
129
+ "epoch": 0.631578947368421,
130
+ "grad_norm": 1318930219008.0,
131
+ "learning_rate": 3.289899283371657e-06,
132
+ "loss": 0.6903,
133
+ "step": 12
134
+ },
135
+ {
136
+ "epoch": 0.631578947368421,
137
+ "eval_loss": 0.5691469311714172,
138
+ "eval_runtime": 0.2973,
139
+ "eval_samples_per_second": 6.728,
140
+ "eval_steps_per_second": 3.364,
141
+ "step": 12
142
+ },
143
+ {
144
+ "epoch": 0.6842105263157895,
145
+ "grad_norm": 137136914432.0,
146
+ "learning_rate": 2.5000000000000015e-06,
147
+ "loss": 0.663,
148
+ "step": 13
149
+ },
150
+ {
151
+ "epoch": 0.7368421052631579,
152
+ "grad_norm": 1604217339904.0,
153
+ "learning_rate": 1.7860619515673034e-06,
154
+ "loss": 0.5994,
155
+ "step": 14
156
+ },
157
+ {
158
+ "epoch": 0.7368421052631579,
159
+ "eval_loss": 0.5684089064598083,
160
+ "eval_runtime": 0.2979,
161
+ "eval_samples_per_second": 6.714,
162
+ "eval_steps_per_second": 3.357,
163
+ "step": 14
164
+ },
165
+ {
166
+ "epoch": 0.7894736842105263,
167
+ "grad_norm": 73108439040.0,
168
+ "learning_rate": 1.1697777844051105e-06,
169
+ "loss": 0.7457,
170
+ "step": 15
171
+ },
172
+ {
173
+ "epoch": 0.8421052631578947,
174
+ "grad_norm": 361255075840.0,
175
+ "learning_rate": 6.698729810778065e-07,
176
+ "loss": 0.7792,
177
+ "step": 16
178
+ },
179
+ {
180
+ "epoch": 0.8421052631578947,
181
+ "eval_loss": 0.5695986747741699,
182
+ "eval_runtime": 0.2976,
183
+ "eval_samples_per_second": 6.72,
184
+ "eval_steps_per_second": 3.36,
185
+ "step": 16
186
+ },
187
+ {
188
+ "epoch": 0.8947368421052632,
189
+ "grad_norm": 222161354752.0,
190
+ "learning_rate": 3.015368960704584e-07,
191
+ "loss": 0.6121,
192
+ "step": 17
193
+ },
194
+ {
195
+ "epoch": 0.9473684210526315,
196
+ "grad_norm": 4849853267968.0,
197
+ "learning_rate": 7.59612349389599e-08,
198
+ "loss": 0.7023,
199
+ "step": 18
200
+ },
201
+ {
202
+ "epoch": 0.9473684210526315,
203
+ "eval_loss": 0.5688631534576416,
204
+ "eval_runtime": 0.298,
205
+ "eval_samples_per_second": 6.711,
206
+ "eval_steps_per_second": 3.355,
207
+ "step": 18
208
+ },
209
+ {
210
+ "epoch": 1.0,
211
+ "grad_norm": 994095661056.0,
212
+ "learning_rate": 0.0,
213
+ "loss": 0.7789,
214
+ "step": 19
215
+ },
216
+ {
217
+ "epoch": 1.0,
218
+ "step": 19,
219
+ "total_flos": 6341035089199104.0,
220
+ "train_loss": 0.7060548631768477,
221
+ "train_runtime": 53.6484,
222
+ "train_samples_per_second": 2.759,
223
+ "train_steps_per_second": 0.354
224
+ }
225
+ ],
226
+ "logging_steps": 1,
227
+ "max_steps": 19,
228
+ "num_input_tokens_seen": 0,
229
+ "num_train_epochs": 1,
230
+ "save_steps": 19,
231
+ "stateful_callbacks": {
232
+ "TrainerControl": {
233
+ "args": {
234
+ "should_epoch_stop": false,
235
+ "should_evaluate": false,
236
+ "should_log": false,
237
+ "should_save": true,
238
+ "should_training_stop": true
239
+ },
240
+ "attributes": {}
241
+ }
242
+ },
243
+ "total_flos": 6341035089199104.0,
244
+ "train_batch_size": 1,
245
+ "trial_name": null,
246
+ "trial_params": null
247
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56d85de0559cf61ca94211b430a49a67f680bb75ce8ddeebe275a4f5596c3c43
3
+ size 7160
training_eval_loss.png ADDED
training_loss.png ADDED