James commited on
Commit
96b7c99
·
1 Parent(s): dd1498a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2583 -5
README.md CHANGED
@@ -1,10 +1,2588 @@
1
  ---
2
- pipeline_tag: sentence-similarity
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  # {MODEL_NAME}
 
1
  ---
 
2
  tags:
3
+ - mteb
4
+ model-index:
5
+ - name: sf_model_e5
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 70.85074626865672
18
+ - type: ap
19
+ value: 33.779217850079206
20
+ - type: f1
21
+ value: 64.96977487239377
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 91.80945
33
+ - type: ap
34
+ value: 88.22978189506895
35
+ - type: f1
36
+ value: 91.7858219911604
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 48.94200000000001
48
+ - type: f1
49
+ value: 47.911934405973895
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 39.616
61
+ - type: map_at_10
62
+ value: 55.938
63
+ - type: map_at_100
64
+ value: 56.552
65
+ - type: map_at_1000
66
+ value: 56.556
67
+ - type: map_at_3
68
+ value: 51.754
69
+ - type: map_at_5
70
+ value: 54.623999999999995
71
+ - type: mrr_at_1
72
+ value: 40.967
73
+ - type: mrr_at_10
74
+ value: 56.452999999999996
75
+ - type: mrr_at_100
76
+ value: 57.053
77
+ - type: mrr_at_1000
78
+ value: 57.057
79
+ - type: mrr_at_3
80
+ value: 52.312000000000005
81
+ - type: mrr_at_5
82
+ value: 55.1
83
+ - type: ndcg_at_1
84
+ value: 39.616
85
+ - type: ndcg_at_10
86
+ value: 64.067
87
+ - type: ndcg_at_100
88
+ value: 66.384
89
+ - type: ndcg_at_1000
90
+ value: 66.468
91
+ - type: ndcg_at_3
92
+ value: 55.74
93
+ - type: ndcg_at_5
94
+ value: 60.889
95
+ - type: precision_at_1
96
+ value: 39.616
97
+ - type: precision_at_10
98
+ value: 8.953999999999999
99
+ - type: precision_at_100
100
+ value: 0.9900000000000001
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 22.428
105
+ - type: precision_at_5
106
+ value: 15.946
107
+ - type: recall_at_1
108
+ value: 39.616
109
+ - type: recall_at_10
110
+ value: 89.545
111
+ - type: recall_at_100
112
+ value: 99.004
113
+ - type: recall_at_1000
114
+ value: 99.644
115
+ - type: recall_at_3
116
+ value: 67.283
117
+ - type: recall_at_5
118
+ value: 79.73
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 48.72923923743124
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 42.87449955203238
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 64.3214434754065
152
+ - type: mrr
153
+ value: 77.87879787187265
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 88.82418607751953
165
+ - type: cos_sim_spearman
166
+ value: 86.74535004562274
167
+ - type: euclidean_pearson
168
+ value: 86.58792166831103
169
+ - type: euclidean_spearman
170
+ value: 86.74535004562274
171
+ - type: manhattan_pearson
172
+ value: 86.23957813056677
173
+ - type: manhattan_spearman
174
+ value: 86.41522204150452
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 84.61363636363636
186
+ - type: f1
187
+ value: 83.98373241136187
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 39.73148995791471
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 37.23723038699733
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 32.217
221
+ - type: map_at_10
222
+ value: 43.453
223
+ - type: map_at_100
224
+ value: 45.038
225
+ - type: map_at_1000
226
+ value: 45.162
227
+ - type: map_at_3
228
+ value: 39.589
229
+ - type: map_at_5
230
+ value: 41.697
231
+ - type: mrr_at_1
232
+ value: 39.628
233
+ - type: mrr_at_10
234
+ value: 49.698
235
+ - type: mrr_at_100
236
+ value: 50.44
237
+ - type: mrr_at_1000
238
+ value: 50.482000000000006
239
+ - type: mrr_at_3
240
+ value: 46.781
241
+ - type: mrr_at_5
242
+ value: 48.548
243
+ - type: ndcg_at_1
244
+ value: 39.628
245
+ - type: ndcg_at_10
246
+ value: 50.158
247
+ - type: ndcg_at_100
248
+ value: 55.687
249
+ - type: ndcg_at_1000
250
+ value: 57.499
251
+ - type: ndcg_at_3
252
+ value: 44.594
253
+ - type: ndcg_at_5
254
+ value: 47.198
255
+ - type: precision_at_1
256
+ value: 39.628
257
+ - type: precision_at_10
258
+ value: 9.828000000000001
259
+ - type: precision_at_100
260
+ value: 1.591
261
+ - type: precision_at_1000
262
+ value: 0.20600000000000002
263
+ - type: precision_at_3
264
+ value: 21.507
265
+ - type: precision_at_5
266
+ value: 15.765
267
+ - type: recall_at_1
268
+ value: 32.217
269
+ - type: recall_at_10
270
+ value: 62.717999999999996
271
+ - type: recall_at_100
272
+ value: 85.992
273
+ - type: recall_at_1000
274
+ value: 97.271
275
+ - type: recall_at_3
276
+ value: 46.694
277
+ - type: recall_at_5
278
+ value: 53.952
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 30.862000000000002
290
+ - type: map_at_10
291
+ value: 41.287
292
+ - type: map_at_100
293
+ value: 42.526
294
+ - type: map_at_1000
295
+ value: 42.653999999999996
296
+ - type: map_at_3
297
+ value: 38.055
298
+ - type: map_at_5
299
+ value: 40.022000000000006
300
+ - type: mrr_at_1
301
+ value: 38.408
302
+ - type: mrr_at_10
303
+ value: 46.943
304
+ - type: mrr_at_100
305
+ value: 47.597
306
+ - type: mrr_at_1000
307
+ value: 47.64
308
+ - type: mrr_at_3
309
+ value: 44.607
310
+ - type: mrr_at_5
311
+ value: 46.079
312
+ - type: ndcg_at_1
313
+ value: 38.408
314
+ - type: ndcg_at_10
315
+ value: 46.936
316
+ - type: ndcg_at_100
317
+ value: 51.307
318
+ - type: ndcg_at_1000
319
+ value: 53.312000000000005
320
+ - type: ndcg_at_3
321
+ value: 42.579
322
+ - type: ndcg_at_5
323
+ value: 44.877
324
+ - type: precision_at_1
325
+ value: 38.408
326
+ - type: precision_at_10
327
+ value: 8.885
328
+ - type: precision_at_100
329
+ value: 1.4449999999999998
330
+ - type: precision_at_1000
331
+ value: 0.192
332
+ - type: precision_at_3
333
+ value: 20.616
334
+ - type: precision_at_5
335
+ value: 14.841
336
+ - type: recall_at_1
337
+ value: 30.862000000000002
338
+ - type: recall_at_10
339
+ value: 56.994
340
+ - type: recall_at_100
341
+ value: 75.347
342
+ - type: recall_at_1000
343
+ value: 87.911
344
+ - type: recall_at_3
345
+ value: 44.230000000000004
346
+ - type: recall_at_5
347
+ value: 50.625
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 39.076
359
+ - type: map_at_10
360
+ value: 52.535
361
+ - type: map_at_100
362
+ value: 53.537
363
+ - type: map_at_1000
364
+ value: 53.591
365
+ - type: map_at_3
366
+ value: 48.961
367
+ - type: map_at_5
368
+ value: 50.96000000000001
369
+ - type: mrr_at_1
370
+ value: 44.765
371
+ - type: mrr_at_10
372
+ value: 55.615
373
+ - type: mrr_at_100
374
+ value: 56.24
375
+ - type: mrr_at_1000
376
+ value: 56.264
377
+ - type: mrr_at_3
378
+ value: 52.925999999999995
379
+ - type: mrr_at_5
380
+ value: 54.493
381
+ - type: ndcg_at_1
382
+ value: 44.765
383
+ - type: ndcg_at_10
384
+ value: 58.777
385
+ - type: ndcg_at_100
386
+ value: 62.574
387
+ - type: ndcg_at_1000
388
+ value: 63.624
389
+ - type: ndcg_at_3
390
+ value: 52.81
391
+ - type: ndcg_at_5
392
+ value: 55.657999999999994
393
+ - type: precision_at_1
394
+ value: 44.765
395
+ - type: precision_at_10
396
+ value: 9.693
397
+ - type: precision_at_100
398
+ value: 1.248
399
+ - type: precision_at_1000
400
+ value: 0.13799999999999998
401
+ - type: precision_at_3
402
+ value: 23.866
403
+ - type: precision_at_5
404
+ value: 16.489
405
+ - type: recall_at_1
406
+ value: 39.076
407
+ - type: recall_at_10
408
+ value: 74.01299999999999
409
+ - type: recall_at_100
410
+ value: 90.363
411
+ - type: recall_at_1000
412
+ value: 97.782
413
+ - type: recall_at_3
414
+ value: 58.056
415
+ - type: recall_at_5
416
+ value: 65.029
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 26.357000000000003
428
+ - type: map_at_10
429
+ value: 35.492000000000004
430
+ - type: map_at_100
431
+ value: 36.504999999999995
432
+ - type: map_at_1000
433
+ value: 36.578
434
+ - type: map_at_3
435
+ value: 32.696999999999996
436
+ - type: map_at_5
437
+ value: 34.388999999999996
438
+ - type: mrr_at_1
439
+ value: 28.136
440
+ - type: mrr_at_10
441
+ value: 37.383
442
+ - type: mrr_at_100
443
+ value: 38.271
444
+ - type: mrr_at_1000
445
+ value: 38.324999999999996
446
+ - type: mrr_at_3
447
+ value: 34.782999999999994
448
+ - type: mrr_at_5
449
+ value: 36.416
450
+ - type: ndcg_at_1
451
+ value: 28.136
452
+ - type: ndcg_at_10
453
+ value: 40.741
454
+ - type: ndcg_at_100
455
+ value: 45.803
456
+ - type: ndcg_at_1000
457
+ value: 47.637
458
+ - type: ndcg_at_3
459
+ value: 35.412
460
+ - type: ndcg_at_5
461
+ value: 38.251000000000005
462
+ - type: precision_at_1
463
+ value: 28.136
464
+ - type: precision_at_10
465
+ value: 6.315999999999999
466
+ - type: precision_at_100
467
+ value: 0.931
468
+ - type: precision_at_1000
469
+ value: 0.11299999999999999
470
+ - type: precision_at_3
471
+ value: 15.254000000000001
472
+ - type: precision_at_5
473
+ value: 10.757
474
+ - type: recall_at_1
475
+ value: 26.357000000000003
476
+ - type: recall_at_10
477
+ value: 55.021
478
+ - type: recall_at_100
479
+ value: 78.501
480
+ - type: recall_at_1000
481
+ value: 92.133
482
+ - type: recall_at_3
483
+ value: 40.798
484
+ - type: recall_at_5
485
+ value: 47.591
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 17.302
497
+ - type: map_at_10
498
+ value: 26.365
499
+ - type: map_at_100
500
+ value: 27.581
501
+ - type: map_at_1000
502
+ value: 27.705999999999996
503
+ - type: map_at_3
504
+ value: 23.682
505
+ - type: map_at_5
506
+ value: 25.304
507
+ - type: mrr_at_1
508
+ value: 21.891
509
+ - type: mrr_at_10
510
+ value: 31.227
511
+ - type: mrr_at_100
512
+ value: 32.22
513
+ - type: mrr_at_1000
514
+ value: 32.282
515
+ - type: mrr_at_3
516
+ value: 28.711
517
+ - type: mrr_at_5
518
+ value: 30.314999999999998
519
+ - type: ndcg_at_1
520
+ value: 21.891
521
+ - type: ndcg_at_10
522
+ value: 31.965
523
+ - type: ndcg_at_100
524
+ value: 37.869
525
+ - type: ndcg_at_1000
526
+ value: 40.642
527
+ - type: ndcg_at_3
528
+ value: 27.184
529
+ - type: ndcg_at_5
530
+ value: 29.686
531
+ - type: precision_at_1
532
+ value: 21.891
533
+ - type: precision_at_10
534
+ value: 5.9830000000000005
535
+ - type: precision_at_100
536
+ value: 1.0250000000000001
537
+ - type: precision_at_1000
538
+ value: 0.14100000000000001
539
+ - type: precision_at_3
540
+ value: 13.391
541
+ - type: precision_at_5
542
+ value: 9.801
543
+ - type: recall_at_1
544
+ value: 17.302
545
+ - type: recall_at_10
546
+ value: 44.312000000000005
547
+ - type: recall_at_100
548
+ value: 70.274
549
+ - type: recall_at_1000
550
+ value: 89.709
551
+ - type: recall_at_3
552
+ value: 31.117
553
+ - type: recall_at_5
554
+ value: 37.511
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 29.404000000000003
566
+ - type: map_at_10
567
+ value: 40.571
568
+ - type: map_at_100
569
+ value: 42.049
570
+ - type: map_at_1000
571
+ value: 42.156
572
+ - type: map_at_3
573
+ value: 37.413000000000004
574
+ - type: map_at_5
575
+ value: 39.206
576
+ - type: mrr_at_1
577
+ value: 36.285000000000004
578
+ - type: mrr_at_10
579
+ value: 46.213
580
+ - type: mrr_at_100
581
+ value: 47.129
582
+ - type: mrr_at_1000
583
+ value: 47.168
584
+ - type: mrr_at_3
585
+ value: 43.84
586
+ - type: mrr_at_5
587
+ value: 45.226
588
+ - type: ndcg_at_1
589
+ value: 36.285000000000004
590
+ - type: ndcg_at_10
591
+ value: 46.809
592
+ - type: ndcg_at_100
593
+ value: 52.615
594
+ - type: ndcg_at_1000
595
+ value: 54.538
596
+ - type: ndcg_at_3
597
+ value: 41.91
598
+ - type: ndcg_at_5
599
+ value: 44.224999999999994
600
+ - type: precision_at_1
601
+ value: 36.285000000000004
602
+ - type: precision_at_10
603
+ value: 8.527
604
+ - type: precision_at_100
605
+ value: 1.3259999999999998
606
+ - type: precision_at_1000
607
+ value: 0.167
608
+ - type: precision_at_3
609
+ value: 20.083000000000002
610
+ - type: precision_at_5
611
+ value: 14.071
612
+ - type: recall_at_1
613
+ value: 29.404000000000003
614
+ - type: recall_at_10
615
+ value: 59.611999999999995
616
+ - type: recall_at_100
617
+ value: 83.383
618
+ - type: recall_at_1000
619
+ value: 95.703
620
+ - type: recall_at_3
621
+ value: 45.663
622
+ - type: recall_at_5
623
+ value: 51.971999999999994
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 25.317
635
+ - type: map_at_10
636
+ value: 35.217999999999996
637
+ - type: map_at_100
638
+ value: 36.665
639
+ - type: map_at_1000
640
+ value: 36.768
641
+ - type: map_at_3
642
+ value: 31.924000000000003
643
+ - type: map_at_5
644
+ value: 33.591
645
+ - type: mrr_at_1
646
+ value: 31.507
647
+ - type: mrr_at_10
648
+ value: 40.671
649
+ - type: mrr_at_100
650
+ value: 41.609
651
+ - type: mrr_at_1000
652
+ value: 41.657
653
+ - type: mrr_at_3
654
+ value: 38.261
655
+ - type: mrr_at_5
656
+ value: 39.431
657
+ - type: ndcg_at_1
658
+ value: 31.507
659
+ - type: ndcg_at_10
660
+ value: 41.375
661
+ - type: ndcg_at_100
662
+ value: 47.426
663
+ - type: ndcg_at_1000
664
+ value: 49.504
665
+ - type: ndcg_at_3
666
+ value: 35.989
667
+ - type: ndcg_at_5
668
+ value: 38.068000000000005
669
+ - type: precision_at_1
670
+ value: 31.507
671
+ - type: precision_at_10
672
+ value: 7.8420000000000005
673
+ - type: precision_at_100
674
+ value: 1.257
675
+ - type: precision_at_1000
676
+ value: 0.16199999999999998
677
+ - type: precision_at_3
678
+ value: 17.352
679
+ - type: precision_at_5
680
+ value: 12.328999999999999
681
+ - type: recall_at_1
682
+ value: 25.317
683
+ - type: recall_at_10
684
+ value: 54.254999999999995
685
+ - type: recall_at_100
686
+ value: 80.184
687
+ - type: recall_at_1000
688
+ value: 94.07
689
+ - type: recall_at_3
690
+ value: 39.117000000000004
691
+ - type: recall_at_5
692
+ value: 44.711
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 25.813000000000002
704
+ - type: map_at_10
705
+ value: 35.47183333333334
706
+ - type: map_at_100
707
+ value: 36.71775
708
+ - type: map_at_1000
709
+ value: 36.833000000000006
710
+ - type: map_at_3
711
+ value: 32.449916666666674
712
+ - type: map_at_5
713
+ value: 34.1235
714
+ - type: mrr_at_1
715
+ value: 30.766750000000005
716
+ - type: mrr_at_10
717
+ value: 39.77508333333334
718
+ - type: mrr_at_100
719
+ value: 40.64233333333333
720
+ - type: mrr_at_1000
721
+ value: 40.69658333333333
722
+ - type: mrr_at_3
723
+ value: 37.27349999999999
724
+ - type: mrr_at_5
725
+ value: 38.723416666666665
726
+ - type: ndcg_at_1
727
+ value: 30.766750000000005
728
+ - type: ndcg_at_10
729
+ value: 41.141416666666665
730
+ - type: ndcg_at_100
731
+ value: 46.42016666666666
732
+ - type: ndcg_at_1000
733
+ value: 48.61916666666667
734
+ - type: ndcg_at_3
735
+ value: 36.06883333333333
736
+ - type: ndcg_at_5
737
+ value: 38.43966666666666
738
+ - type: precision_at_1
739
+ value: 30.766750000000005
740
+ - type: precision_at_10
741
+ value: 7.340000000000001
742
+ - type: precision_at_100
743
+ value: 1.1796666666666666
744
+ - type: precision_at_1000
745
+ value: 0.15625
746
+ - type: precision_at_3
747
+ value: 16.763833333333334
748
+ - type: precision_at_5
749
+ value: 11.972166666666666
750
+ - type: recall_at_1
751
+ value: 25.813000000000002
752
+ - type: recall_at_10
753
+ value: 53.62741666666667
754
+ - type: recall_at_100
755
+ value: 76.70125000000002
756
+ - type: recall_at_1000
757
+ value: 91.85566666666666
758
+ - type: recall_at_3
759
+ value: 39.55075
760
+ - type: recall_at_5
761
+ value: 45.645250000000004
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 23.249
773
+ - type: map_at_10
774
+ value: 31.095
775
+ - type: map_at_100
776
+ value: 32.056000000000004
777
+ - type: map_at_1000
778
+ value: 32.163000000000004
779
+ - type: map_at_3
780
+ value: 29.275000000000002
781
+ - type: map_at_5
782
+ value: 30.333
783
+ - type: mrr_at_1
784
+ value: 26.687
785
+ - type: mrr_at_10
786
+ value: 34.122
787
+ - type: mrr_at_100
788
+ value: 34.958
789
+ - type: mrr_at_1000
790
+ value: 35.039
791
+ - type: mrr_at_3
792
+ value: 32.541
793
+ - type: mrr_at_5
794
+ value: 33.43
795
+ - type: ndcg_at_1
796
+ value: 26.687
797
+ - type: ndcg_at_10
798
+ value: 35.248000000000005
799
+ - type: ndcg_at_100
800
+ value: 39.933
801
+ - type: ndcg_at_1000
802
+ value: 42.616
803
+ - type: ndcg_at_3
804
+ value: 31.980999999999998
805
+ - type: ndcg_at_5
806
+ value: 33.583
807
+ - type: precision_at_1
808
+ value: 26.687
809
+ - type: precision_at_10
810
+ value: 5.445
811
+ - type: precision_at_100
812
+ value: 0.848
813
+ - type: precision_at_1000
814
+ value: 0.11499999999999999
815
+ - type: precision_at_3
816
+ value: 13.957
817
+ - type: precision_at_5
818
+ value: 9.479
819
+ - type: recall_at_1
820
+ value: 23.249
821
+ - type: recall_at_10
822
+ value: 45.005
823
+ - type: recall_at_100
824
+ value: 66.175
825
+ - type: recall_at_1000
826
+ value: 86.116
827
+ - type: recall_at_3
828
+ value: 36.03
829
+ - type: recall_at_5
830
+ value: 40.037
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 17.592
842
+ - type: map_at_10
843
+ value: 25.003999999999998
844
+ - type: map_at_100
845
+ value: 26.208
846
+ - type: map_at_1000
847
+ value: 26.333000000000002
848
+ - type: map_at_3
849
+ value: 22.479
850
+ - type: map_at_5
851
+ value: 23.712
852
+ - type: mrr_at_1
853
+ value: 21.37
854
+ - type: mrr_at_10
855
+ value: 28.951999999999998
856
+ - type: mrr_at_100
857
+ value: 29.915999999999997
858
+ - type: mrr_at_1000
859
+ value: 29.99
860
+ - type: mrr_at_3
861
+ value: 26.503
862
+ - type: mrr_at_5
863
+ value: 27.728
864
+ - type: ndcg_at_1
865
+ value: 21.37
866
+ - type: ndcg_at_10
867
+ value: 29.944
868
+ - type: ndcg_at_100
869
+ value: 35.632000000000005
870
+ - type: ndcg_at_1000
871
+ value: 38.393
872
+ - type: ndcg_at_3
873
+ value: 25.263999999999996
874
+ - type: ndcg_at_5
875
+ value: 27.115000000000002
876
+ - type: precision_at_1
877
+ value: 21.37
878
+ - type: precision_at_10
879
+ value: 5.568
880
+ - type: precision_at_100
881
+ value: 0.992
882
+ - type: precision_at_1000
883
+ value: 0.13999999999999999
884
+ - type: precision_at_3
885
+ value: 11.895
886
+ - type: precision_at_5
887
+ value: 8.61
888
+ - type: recall_at_1
889
+ value: 17.592
890
+ - type: recall_at_10
891
+ value: 40.976
892
+ - type: recall_at_100
893
+ value: 66.487
894
+ - type: recall_at_1000
895
+ value: 85.954
896
+ - type: recall_at_3
897
+ value: 27.797
898
+ - type: recall_at_5
899
+ value: 32.553
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 25.173000000000002
911
+ - type: map_at_10
912
+ value: 34.611999999999995
913
+ - type: map_at_100
914
+ value: 35.735
915
+ - type: map_at_1000
916
+ value: 35.842
917
+ - type: map_at_3
918
+ value: 31.345
919
+ - type: map_at_5
920
+ value: 33.123000000000005
921
+ - type: mrr_at_1
922
+ value: 29.570999999999998
923
+ - type: mrr_at_10
924
+ value: 38.775999999999996
925
+ - type: mrr_at_100
926
+ value: 39.621
927
+ - type: mrr_at_1000
928
+ value: 39.684000000000005
929
+ - type: mrr_at_3
930
+ value: 35.992000000000004
931
+ - type: mrr_at_5
932
+ value: 37.586999999999996
933
+ - type: ndcg_at_1
934
+ value: 29.570999999999998
935
+ - type: ndcg_at_10
936
+ value: 40.388000000000005
937
+ - type: ndcg_at_100
938
+ value: 45.59
939
+ - type: ndcg_at_1000
940
+ value: 47.948
941
+ - type: ndcg_at_3
942
+ value: 34.497
943
+ - type: ndcg_at_5
944
+ value: 37.201
945
+ - type: precision_at_1
946
+ value: 29.570999999999998
947
+ - type: precision_at_10
948
+ value: 6.931
949
+ - type: precision_at_100
950
+ value: 1.082
951
+ - type: precision_at_1000
952
+ value: 0.13999999999999999
953
+ - type: precision_at_3
954
+ value: 15.609
955
+ - type: precision_at_5
956
+ value: 11.286999999999999
957
+ - type: recall_at_1
958
+ value: 25.173000000000002
959
+ - type: recall_at_10
960
+ value: 53.949000000000005
961
+ - type: recall_at_100
962
+ value: 76.536
963
+ - type: recall_at_1000
964
+ value: 92.979
965
+ - type: recall_at_3
966
+ value: 37.987
967
+ - type: recall_at_5
968
+ value: 44.689
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 24.224
980
+ - type: map_at_10
981
+ value: 32.903
982
+ - type: map_at_100
983
+ value: 34.65
984
+ - type: map_at_1000
985
+ value: 34.873
986
+ - type: map_at_3
987
+ value: 29.673
988
+ - type: map_at_5
989
+ value: 31.361
990
+ - type: mrr_at_1
991
+ value: 30.435000000000002
992
+ - type: mrr_at_10
993
+ value: 38.677
994
+ - type: mrr_at_100
995
+ value: 39.805
996
+ - type: mrr_at_1000
997
+ value: 39.851
998
+ - type: mrr_at_3
999
+ value: 35.935
1000
+ - type: mrr_at_5
1001
+ value: 37.566
1002
+ - type: ndcg_at_1
1003
+ value: 30.435000000000002
1004
+ - type: ndcg_at_10
1005
+ value: 39.012
1006
+ - type: ndcg_at_100
1007
+ value: 45.553
1008
+ - type: ndcg_at_1000
1009
+ value: 47.919
1010
+ - type: ndcg_at_3
1011
+ value: 33.809
1012
+ - type: ndcg_at_5
1013
+ value: 36.120999999999995
1014
+ - type: precision_at_1
1015
+ value: 30.435000000000002
1016
+ - type: precision_at_10
1017
+ value: 7.628
1018
+ - type: precision_at_100
1019
+ value: 1.5810000000000002
1020
+ - type: precision_at_1000
1021
+ value: 0.243
1022
+ - type: precision_at_3
1023
+ value: 15.744
1024
+ - type: precision_at_5
1025
+ value: 11.66
1026
+ - type: recall_at_1
1027
+ value: 24.224
1028
+ - type: recall_at_10
1029
+ value: 50.009
1030
+ - type: recall_at_100
1031
+ value: 78.839
1032
+ - type: recall_at_1000
1033
+ value: 93.71300000000001
1034
+ - type: recall_at_3
1035
+ value: 35.512
1036
+ - type: recall_at_5
1037
+ value: 41.541
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 18.983
1049
+ - type: map_at_10
1050
+ value: 27.127000000000002
1051
+ - type: map_at_100
1052
+ value: 28.063
1053
+ - type: map_at_1000
1054
+ value: 28.17
1055
+ - type: map_at_3
1056
+ value: 24.306
1057
+ - type: map_at_5
1058
+ value: 25.784000000000002
1059
+ - type: mrr_at_1
1060
+ value: 20.518
1061
+ - type: mrr_at_10
1062
+ value: 29.024
1063
+ - type: mrr_at_100
1064
+ value: 29.902
1065
+ - type: mrr_at_1000
1066
+ value: 29.976999999999997
1067
+ - type: mrr_at_3
1068
+ value: 26.401999999999997
1069
+ - type: mrr_at_5
1070
+ value: 27.862
1071
+ - type: ndcg_at_1
1072
+ value: 20.518
1073
+ - type: ndcg_at_10
1074
+ value: 32.344
1075
+ - type: ndcg_at_100
1076
+ value: 37.053000000000004
1077
+ - type: ndcg_at_1000
1078
+ value: 39.798
1079
+ - type: ndcg_at_3
1080
+ value: 26.796999999999997
1081
+ - type: ndcg_at_5
1082
+ value: 29.293000000000003
1083
+ - type: precision_at_1
1084
+ value: 20.518
1085
+ - type: precision_at_10
1086
+ value: 5.434
1087
+ - type: precision_at_100
1088
+ value: 0.83
1089
+ - type: precision_at_1000
1090
+ value: 0.11800000000000001
1091
+ - type: precision_at_3
1092
+ value: 11.892
1093
+ - type: precision_at_5
1094
+ value: 8.577
1095
+ - type: recall_at_1
1096
+ value: 18.983
1097
+ - type: recall_at_10
1098
+ value: 46.665
1099
+ - type: recall_at_100
1100
+ value: 68.33399999999999
1101
+ - type: recall_at_1000
1102
+ value: 88.927
1103
+ - type: recall_at_3
1104
+ value: 31.608000000000004
1105
+ - type: recall_at_5
1106
+ value: 37.532
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 11.200000000000001
1118
+ - type: map_at_10
1119
+ value: 20.241999999999997
1120
+ - type: map_at_100
1121
+ value: 22.357
1122
+ - type: map_at_1000
1123
+ value: 22.556
1124
+ - type: map_at_3
1125
+ value: 16.564999999999998
1126
+ - type: map_at_5
1127
+ value: 18.443
1128
+ - type: mrr_at_1
1129
+ value: 25.277
1130
+ - type: mrr_at_10
1131
+ value: 37.582
1132
+ - type: mrr_at_100
1133
+ value: 38.525999999999996
1134
+ - type: mrr_at_1000
1135
+ value: 38.564
1136
+ - type: mrr_at_3
1137
+ value: 33.898
1138
+ - type: mrr_at_5
1139
+ value: 36.191
1140
+ - type: ndcg_at_1
1141
+ value: 25.277
1142
+ - type: ndcg_at_10
1143
+ value: 28.74
1144
+ - type: ndcg_at_100
1145
+ value: 36.665
1146
+ - type: ndcg_at_1000
1147
+ value: 40.08
1148
+ - type: ndcg_at_3
1149
+ value: 22.888
1150
+ - type: ndcg_at_5
1151
+ value: 25.081999999999997
1152
+ - type: precision_at_1
1153
+ value: 25.277
1154
+ - type: precision_at_10
1155
+ value: 9.251
1156
+ - type: precision_at_100
1157
+ value: 1.773
1158
+ - type: precision_at_1000
1159
+ value: 0.241
1160
+ - type: precision_at_3
1161
+ value: 17.329
1162
+ - type: precision_at_5
1163
+ value: 13.746
1164
+ - type: recall_at_1
1165
+ value: 11.200000000000001
1166
+ - type: recall_at_10
1167
+ value: 35.419
1168
+ - type: recall_at_100
1169
+ value: 62.41
1170
+ - type: recall_at_1000
1171
+ value: 81.467
1172
+ - type: recall_at_3
1173
+ value: 21.275
1174
+ - type: recall_at_5
1175
+ value: 27.201999999999998
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 9.396
1187
+ - type: map_at_10
1188
+ value: 20.735
1189
+ - type: map_at_100
1190
+ value: 30.098000000000003
1191
+ - type: map_at_1000
1192
+ value: 31.866
1193
+ - type: map_at_3
1194
+ value: 14.71
1195
+ - type: map_at_5
1196
+ value: 17.259
1197
+ - type: mrr_at_1
1198
+ value: 70.25
1199
+ - type: mrr_at_10
1200
+ value: 77.09700000000001
1201
+ - type: mrr_at_100
1202
+ value: 77.398
1203
+ - type: mrr_at_1000
1204
+ value: 77.40899999999999
1205
+ - type: mrr_at_3
1206
+ value: 75.542
1207
+ - type: mrr_at_5
1208
+ value: 76.354
1209
+ - type: ndcg_at_1
1210
+ value: 57.75
1211
+ - type: ndcg_at_10
1212
+ value: 42.509
1213
+ - type: ndcg_at_100
1214
+ value: 48.94
1215
+ - type: ndcg_at_1000
1216
+ value: 56.501000000000005
1217
+ - type: ndcg_at_3
1218
+ value: 46.827000000000005
1219
+ - type: ndcg_at_5
1220
+ value: 44.033
1221
+ - type: precision_at_1
1222
+ value: 70.25
1223
+ - type: precision_at_10
1224
+ value: 33.85
1225
+ - type: precision_at_100
1226
+ value: 11.373
1227
+ - type: precision_at_1000
1228
+ value: 2.136
1229
+ - type: precision_at_3
1230
+ value: 50.917
1231
+ - type: precision_at_5
1232
+ value: 42.8
1233
+ - type: recall_at_1
1234
+ value: 9.396
1235
+ - type: recall_at_10
1236
+ value: 26.472
1237
+ - type: recall_at_100
1238
+ value: 57.30800000000001
1239
+ - type: recall_at_1000
1240
+ value: 80.983
1241
+ - type: recall_at_3
1242
+ value: 15.859000000000002
1243
+ - type: recall_at_5
1244
+ value: 19.758
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 54.900000000000006
1256
+ - type: f1
1257
+ value: 48.14707395235448
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 66.369
1269
+ - type: map_at_10
1270
+ value: 76.708
1271
+ - type: map_at_100
1272
+ value: 76.981
1273
+ - type: map_at_1000
1274
+ value: 76.995
1275
+ - type: map_at_3
1276
+ value: 75.114
1277
+ - type: map_at_5
1278
+ value: 76.116
1279
+ - type: mrr_at_1
1280
+ value: 71.557
1281
+ - type: mrr_at_10
1282
+ value: 80.95
1283
+ - type: mrr_at_100
1284
+ value: 81.075
1285
+ - type: mrr_at_1000
1286
+ value: 81.07900000000001
1287
+ - type: mrr_at_3
1288
+ value: 79.728
1289
+ - type: mrr_at_5
1290
+ value: 80.522
1291
+ - type: ndcg_at_1
1292
+ value: 71.557
1293
+ - type: ndcg_at_10
1294
+ value: 81.381
1295
+ - type: ndcg_at_100
1296
+ value: 82.421
1297
+ - type: ndcg_at_1000
1298
+ value: 82.709
1299
+ - type: ndcg_at_3
1300
+ value: 78.671
1301
+ - type: ndcg_at_5
1302
+ value: 80.17
1303
+ - type: precision_at_1
1304
+ value: 71.557
1305
+ - type: precision_at_10
1306
+ value: 10.159
1307
+ - type: precision_at_100
1308
+ value: 1.089
1309
+ - type: precision_at_1000
1310
+ value: 0.11299999999999999
1311
+ - type: precision_at_3
1312
+ value: 30.668
1313
+ - type: precision_at_5
1314
+ value: 19.337
1315
+ - type: recall_at_1
1316
+ value: 66.369
1317
+ - type: recall_at_10
1318
+ value: 91.482
1319
+ - type: recall_at_100
1320
+ value: 95.848
1321
+ - type: recall_at_1000
1322
+ value: 97.749
1323
+ - type: recall_at_3
1324
+ value: 84.185
1325
+ - type: recall_at_5
1326
+ value: 87.908
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 20.902
1338
+ - type: map_at_10
1339
+ value: 34.554
1340
+ - type: map_at_100
1341
+ value: 36.632
1342
+ - type: map_at_1000
1343
+ value: 36.811
1344
+ - type: map_at_3
1345
+ value: 30.264000000000003
1346
+ - type: map_at_5
1347
+ value: 32.714999999999996
1348
+ - type: mrr_at_1
1349
+ value: 42.13
1350
+ - type: mrr_at_10
1351
+ value: 51.224000000000004
1352
+ - type: mrr_at_100
1353
+ value: 52.044999999999995
1354
+ - type: mrr_at_1000
1355
+ value: 52.075
1356
+ - type: mrr_at_3
1357
+ value: 48.842999999999996
1358
+ - type: mrr_at_5
1359
+ value: 50.108
1360
+ - type: ndcg_at_1
1361
+ value: 42.13
1362
+ - type: ndcg_at_10
1363
+ value: 42.643
1364
+ - type: ndcg_at_100
1365
+ value: 49.806
1366
+ - type: ndcg_at_1000
1367
+ value: 52.583
1368
+ - type: ndcg_at_3
1369
+ value: 38.927
1370
+ - type: ndcg_at_5
1371
+ value: 40.071
1372
+ - type: precision_at_1
1373
+ value: 42.13
1374
+ - type: precision_at_10
1375
+ value: 11.928999999999998
1376
+ - type: precision_at_100
1377
+ value: 1.931
1378
+ - type: precision_at_1000
1379
+ value: 0.243
1380
+ - type: precision_at_3
1381
+ value: 26.337
1382
+ - type: precision_at_5
1383
+ value: 19.29
1384
+ - type: recall_at_1
1385
+ value: 20.902
1386
+ - type: recall_at_10
1387
+ value: 49.527
1388
+ - type: recall_at_100
1389
+ value: 75.754
1390
+ - type: recall_at_1000
1391
+ value: 92.171
1392
+ - type: recall_at_3
1393
+ value: 35.024
1394
+ - type: recall_at_5
1395
+ value: 41.207
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 39.831
1407
+ - type: map_at_10
1408
+ value: 63.958999999999996
1409
+ - type: map_at_100
1410
+ value: 64.869
1411
+ - type: map_at_1000
1412
+ value: 64.924
1413
+ - type: map_at_3
1414
+ value: 60.25
1415
+ - type: map_at_5
1416
+ value: 62.572
1417
+ - type: mrr_at_1
1418
+ value: 79.662
1419
+ - type: mrr_at_10
1420
+ value: 85.57900000000001
1421
+ - type: mrr_at_100
1422
+ value: 85.744
1423
+ - type: mrr_at_1000
1424
+ value: 85.748
1425
+ - type: mrr_at_3
1426
+ value: 84.718
1427
+ - type: mrr_at_5
1428
+ value: 85.312
1429
+ - type: ndcg_at_1
1430
+ value: 79.662
1431
+ - type: ndcg_at_10
1432
+ value: 72.366
1433
+ - type: ndcg_at_100
1434
+ value: 75.42999999999999
1435
+ - type: ndcg_at_1000
1436
+ value: 76.469
1437
+ - type: ndcg_at_3
1438
+ value: 67.258
1439
+ - type: ndcg_at_5
1440
+ value: 70.14099999999999
1441
+ - type: precision_at_1
1442
+ value: 79.662
1443
+ - type: precision_at_10
1444
+ value: 15.254999999999999
1445
+ - type: precision_at_100
1446
+ value: 1.763
1447
+ - type: precision_at_1000
1448
+ value: 0.19
1449
+ - type: precision_at_3
1450
+ value: 43.358000000000004
1451
+ - type: precision_at_5
1452
+ value: 28.288999999999998
1453
+ - type: recall_at_1
1454
+ value: 39.831
1455
+ - type: recall_at_10
1456
+ value: 76.273
1457
+ - type: recall_at_100
1458
+ value: 88.163
1459
+ - type: recall_at_1000
1460
+ value: 95.017
1461
+ - type: recall_at_3
1462
+ value: 65.037
1463
+ - type: recall_at_5
1464
+ value: 70.722
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 93.13879999999999
1476
+ - type: ap
1477
+ value: 89.94638859649079
1478
+ - type: f1
1479
+ value: 93.13371537570421
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 21.482
1491
+ - type: map_at_10
1492
+ value: 33.635999999999996
1493
+ - type: map_at_100
1494
+ value: 34.792
1495
+ - type: map_at_1000
1496
+ value: 34.839999999999996
1497
+ - type: map_at_3
1498
+ value: 29.553
1499
+ - type: map_at_5
1500
+ value: 31.892
1501
+ - type: mrr_at_1
1502
+ value: 22.076999999999998
1503
+ - type: mrr_at_10
1504
+ value: 34.247
1505
+ - type: mrr_at_100
1506
+ value: 35.337
1507
+ - type: mrr_at_1000
1508
+ value: 35.38
1509
+ - type: mrr_at_3
1510
+ value: 30.208000000000002
1511
+ - type: mrr_at_5
1512
+ value: 32.554
1513
+ - type: ndcg_at_1
1514
+ value: 22.092
1515
+ - type: ndcg_at_10
1516
+ value: 40.657
1517
+ - type: ndcg_at_100
1518
+ value: 46.251999999999995
1519
+ - type: ndcg_at_1000
1520
+ value: 47.466
1521
+ - type: ndcg_at_3
1522
+ value: 32.353
1523
+ - type: ndcg_at_5
1524
+ value: 36.532
1525
+ - type: precision_at_1
1526
+ value: 22.092
1527
+ - type: precision_at_10
1528
+ value: 6.5040000000000004
1529
+ - type: precision_at_100
1530
+ value: 0.9329999999999999
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 13.719999999999999
1535
+ - type: precision_at_5
1536
+ value: 10.344000000000001
1537
+ - type: recall_at_1
1538
+ value: 21.482
1539
+ - type: recall_at_10
1540
+ value: 62.316
1541
+ - type: recall_at_100
1542
+ value: 88.283
1543
+ - type: recall_at_1000
1544
+ value: 97.554
1545
+ - type: recall_at_3
1546
+ value: 39.822
1547
+ - type: recall_at_5
1548
+ value: 49.805
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 93.63657090743274
1560
+ - type: f1
1561
+ value: 93.49355466580484
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 66.01459188326493
1573
+ - type: f1
1574
+ value: 48.48386472180784
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 73.49024882313383
1586
+ - type: f1
1587
+ value: 71.8750196914349
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 77.38063214525891
1599
+ - type: f1
1600
+ value: 76.87364042122763
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 34.30572302322684
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 32.18418556367587
1623
+ - task:
1624
+ type: Retrieval
1625
+ dataset:
1626
+ type: nfcorpus
1627
+ name: MTEB NFCorpus
1628
+ config: default
1629
+ split: test
1630
+ revision: None
1631
+ metrics:
1632
+ - type: map_at_1
1633
+ value: 6.586
1634
+ - type: map_at_10
1635
+ value: 14.954999999999998
1636
+ - type: map_at_100
1637
+ value: 19.03
1638
+ - type: map_at_1000
1639
+ value: 20.653
1640
+ - type: map_at_3
1641
+ value: 10.859
1642
+ - type: map_at_5
1643
+ value: 12.577
1644
+ - type: mrr_at_1
1645
+ value: 47.988
1646
+ - type: mrr_at_10
1647
+ value: 57.57
1648
+ - type: mrr_at_100
1649
+ value: 58.050000000000004
1650
+ - type: mrr_at_1000
1651
+ value: 58.083
1652
+ - type: mrr_at_3
1653
+ value: 55.212
1654
+ - type: mrr_at_5
1655
+ value: 56.713
1656
+ - type: ndcg_at_1
1657
+ value: 45.975
1658
+ - type: ndcg_at_10
1659
+ value: 38.432
1660
+ - type: ndcg_at_100
1661
+ value: 35.287
1662
+ - type: ndcg_at_1000
1663
+ value: 44.35
1664
+ - type: ndcg_at_3
1665
+ value: 43.077
1666
+ - type: ndcg_at_5
1667
+ value: 40.952
1668
+ - type: precision_at_1
1669
+ value: 47.368
1670
+ - type: precision_at_10
1671
+ value: 28.483000000000004
1672
+ - type: precision_at_100
1673
+ value: 8.882
1674
+ - type: precision_at_1000
1675
+ value: 2.217
1676
+ - type: precision_at_3
1677
+ value: 40.144000000000005
1678
+ - type: precision_at_5
1679
+ value: 35.17
1680
+ - type: recall_at_1
1681
+ value: 6.586
1682
+ - type: recall_at_10
1683
+ value: 19.688
1684
+ - type: recall_at_100
1685
+ value: 35.426
1686
+ - type: recall_at_1000
1687
+ value: 68.09100000000001
1688
+ - type: recall_at_3
1689
+ value: 12.234
1690
+ - type: recall_at_5
1691
+ value: 14.937000000000001
1692
+ - task:
1693
+ type: Retrieval
1694
+ dataset:
1695
+ type: nq
1696
+ name: MTEB NQ
1697
+ config: default
1698
+ split: test
1699
+ revision: None
1700
+ metrics:
1701
+ - type: map_at_1
1702
+ value: 27.322000000000003
1703
+ - type: map_at_10
1704
+ value: 43.224000000000004
1705
+ - type: map_at_100
1706
+ value: 44.275999999999996
1707
+ - type: map_at_1000
1708
+ value: 44.308
1709
+ - type: map_at_3
1710
+ value: 38.239000000000004
1711
+ - type: map_at_5
1712
+ value: 41.244
1713
+ - type: mrr_at_1
1714
+ value: 31.025000000000002
1715
+ - type: mrr_at_10
1716
+ value: 45.635
1717
+ - type: mrr_at_100
1718
+ value: 46.425
1719
+ - type: mrr_at_1000
1720
+ value: 46.445
1721
+ - type: mrr_at_3
1722
+ value: 41.42
1723
+ - type: mrr_at_5
1724
+ value: 44.038
1725
+ - type: ndcg_at_1
1726
+ value: 30.997000000000003
1727
+ - type: ndcg_at_10
1728
+ value: 51.55499999999999
1729
+ - type: ndcg_at_100
1730
+ value: 55.964999999999996
1731
+ - type: ndcg_at_1000
1732
+ value: 56.657000000000004
1733
+ - type: ndcg_at_3
1734
+ value: 42.185
1735
+ - type: ndcg_at_5
1736
+ value: 47.229
1737
+ - type: precision_at_1
1738
+ value: 30.997000000000003
1739
+ - type: precision_at_10
1740
+ value: 8.885
1741
+ - type: precision_at_100
1742
+ value: 1.1360000000000001
1743
+ - type: precision_at_1000
1744
+ value: 0.12
1745
+ - type: precision_at_3
1746
+ value: 19.457
1747
+ - type: precision_at_5
1748
+ value: 14.554
1749
+ - type: recall_at_1
1750
+ value: 27.322000000000003
1751
+ - type: recall_at_10
1752
+ value: 74.59400000000001
1753
+ - type: recall_at_100
1754
+ value: 93.699
1755
+ - type: recall_at_1000
1756
+ value: 98.76599999999999
1757
+ - type: recall_at_3
1758
+ value: 50.43
1759
+ - type: recall_at_5
1760
+ value: 62.073
1761
+ - task:
1762
+ type: Retrieval
1763
+ dataset:
1764
+ type: quora
1765
+ name: MTEB QuoraRetrieval
1766
+ config: default
1767
+ split: test
1768
+ revision: None
1769
+ metrics:
1770
+ - type: map_at_1
1771
+ value: 71.109
1772
+ - type: map_at_10
1773
+ value: 85.137
1774
+ - type: map_at_100
1775
+ value: 85.759
1776
+ - type: map_at_1000
1777
+ value: 85.774
1778
+ - type: map_at_3
1779
+ value: 82.25200000000001
1780
+ - type: map_at_5
1781
+ value: 84.031
1782
+ - type: mrr_at_1
1783
+ value: 82.01
1784
+ - type: mrr_at_10
1785
+ value: 87.97
1786
+ - type: mrr_at_100
1787
+ value: 88.076
1788
+ - type: mrr_at_1000
1789
+ value: 88.076
1790
+ - type: mrr_at_3
1791
+ value: 87.06
1792
+ - type: mrr_at_5
1793
+ value: 87.694
1794
+ - type: ndcg_at_1
1795
+ value: 81.99
1796
+ - type: ndcg_at_10
1797
+ value: 88.738
1798
+ - type: ndcg_at_100
1799
+ value: 89.928
1800
+ - type: ndcg_at_1000
1801
+ value: 90.01400000000001
1802
+ - type: ndcg_at_3
1803
+ value: 86.042
1804
+ - type: ndcg_at_5
1805
+ value: 87.505
1806
+ - type: precision_at_1
1807
+ value: 81.99
1808
+ - type: precision_at_10
1809
+ value: 13.468
1810
+ - type: precision_at_100
1811
+ value: 1.534
1812
+ - type: precision_at_1000
1813
+ value: 0.157
1814
+ - type: precision_at_3
1815
+ value: 37.702999999999996
1816
+ - type: precision_at_5
1817
+ value: 24.706
1818
+ - type: recall_at_1
1819
+ value: 71.109
1820
+ - type: recall_at_10
1821
+ value: 95.58
1822
+ - type: recall_at_100
1823
+ value: 99.62299999999999
1824
+ - type: recall_at_1000
1825
+ value: 99.98899999999999
1826
+ - type: recall_at_3
1827
+ value: 87.69
1828
+ - type: recall_at_5
1829
+ value: 91.982
1830
+ - task:
1831
+ type: Clustering
1832
+ dataset:
1833
+ type: mteb/reddit-clustering
1834
+ name: MTEB RedditClustering
1835
+ config: default
1836
+ split: test
1837
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1838
+ metrics:
1839
+ - type: v_measure
1840
+ value: 59.43361510023748
1841
+ - task:
1842
+ type: Clustering
1843
+ dataset:
1844
+ type: mteb/reddit-clustering-p2p
1845
+ name: MTEB RedditClusteringP2P
1846
+ config: default
1847
+ split: test
1848
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1849
+ metrics:
1850
+ - type: v_measure
1851
+ value: 64.53582642500159
1852
+ - task:
1853
+ type: Retrieval
1854
+ dataset:
1855
+ type: scidocs
1856
+ name: MTEB SCIDOCS
1857
+ config: default
1858
+ split: test
1859
+ revision: None
1860
+ metrics:
1861
+ - type: map_at_1
1862
+ value: 4.2299999999999995
1863
+ - type: map_at_10
1864
+ value: 11.802
1865
+ - type: map_at_100
1866
+ value: 14.454
1867
+ - type: map_at_1000
1868
+ value: 14.865
1869
+ - type: map_at_3
1870
+ value: 7.911
1871
+ - type: map_at_5
1872
+ value: 9.912
1873
+ - type: mrr_at_1
1874
+ value: 21.0
1875
+ - type: mrr_at_10
1876
+ value: 32.722
1877
+ - type: mrr_at_100
1878
+ value: 33.989000000000004
1879
+ - type: mrr_at_1000
1880
+ value: 34.026
1881
+ - type: mrr_at_3
1882
+ value: 28.65
1883
+ - type: mrr_at_5
1884
+ value: 31.075000000000003
1885
+ - type: ndcg_at_1
1886
+ value: 21.0
1887
+ - type: ndcg_at_10
1888
+ value: 20.161
1889
+ - type: ndcg_at_100
1890
+ value: 30.122
1891
+ - type: ndcg_at_1000
1892
+ value: 36.399
1893
+ - type: ndcg_at_3
1894
+ value: 17.881
1895
+ - type: ndcg_at_5
1896
+ value: 16.439999999999998
1897
+ - type: precision_at_1
1898
+ value: 21.0
1899
+ - type: precision_at_10
1900
+ value: 10.94
1901
+ - type: precision_at_100
1902
+ value: 2.5340000000000003
1903
+ - type: precision_at_1000
1904
+ value: 0.402
1905
+ - type: precision_at_3
1906
+ value: 17.067
1907
+ - type: precision_at_5
1908
+ value: 15.120000000000001
1909
+ - type: recall_at_1
1910
+ value: 4.2299999999999995
1911
+ - type: recall_at_10
1912
+ value: 22.163
1913
+ - type: recall_at_100
1914
+ value: 51.42
1915
+ - type: recall_at_1000
1916
+ value: 81.652
1917
+ - type: recall_at_3
1918
+ value: 10.353
1919
+ - type: recall_at_5
1920
+ value: 15.323
1921
+ - task:
1922
+ type: STS
1923
+ dataset:
1924
+ type: mteb/sickr-sts
1925
+ name: MTEB SICK-R
1926
+ config: default
1927
+ split: test
1928
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1929
+ metrics:
1930
+ - type: cos_sim_pearson
1931
+ value: 86.44056731476951
1932
+ - type: cos_sim_spearman
1933
+ value: 82.32974396072802
1934
+ - type: euclidean_pearson
1935
+ value: 83.63616080755894
1936
+ - type: euclidean_spearman
1937
+ value: 82.32974071069209
1938
+ - type: manhattan_pearson
1939
+ value: 83.64149958303744
1940
+ - type: manhattan_spearman
1941
+ value: 82.32161014878858
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ type: mteb/sts12-sts
1946
+ name: MTEB STS12
1947
+ config: default
1948
+ split: test
1949
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 85.65083720426293
1953
+ - type: cos_sim_spearman
1954
+ value: 77.60786500521749
1955
+ - type: euclidean_pearson
1956
+ value: 81.8149634918642
1957
+ - type: euclidean_spearman
1958
+ value: 77.60637450428892
1959
+ - type: manhattan_pearson
1960
+ value: 81.83507575657566
1961
+ - type: manhattan_spearman
1962
+ value: 77.613220311151
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ type: mteb/sts13-sts
1967
+ name: MTEB STS13
1968
+ config: default
1969
+ split: test
1970
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 87.35683624595698
1974
+ - type: cos_sim_spearman
1975
+ value: 87.94550696434106
1976
+ - type: euclidean_pearson
1977
+ value: 87.50272679030367
1978
+ - type: euclidean_spearman
1979
+ value: 87.94550696434106
1980
+ - type: manhattan_pearson
1981
+ value: 87.4759786099497
1982
+ - type: manhattan_spearman
1983
+ value: 87.90226811166427
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ type: mteb/sts14-sts
1988
+ name: MTEB STS14
1989
+ config: default
1990
+ split: test
1991
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 86.27438743391316
1995
+ - type: cos_sim_spearman
1996
+ value: 83.85378984594779
1997
+ - type: euclidean_pearson
1998
+ value: 85.25840635223642
1999
+ - type: euclidean_spearman
2000
+ value: 83.85378983163673
2001
+ - type: manhattan_pearson
2002
+ value: 85.24936075631025
2003
+ - type: manhattan_spearman
2004
+ value: 83.85052479958138
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ type: mteb/sts15-sts
2009
+ name: MTEB STS15
2010
+ config: default
2011
+ split: test
2012
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 87.4783814521557
2016
+ - type: cos_sim_spearman
2017
+ value: 88.473284566453
2018
+ - type: euclidean_pearson
2019
+ value: 87.94757741870404
2020
+ - type: euclidean_spearman
2021
+ value: 88.47327698999878
2022
+ - type: manhattan_pearson
2023
+ value: 87.93617414057984
2024
+ - type: manhattan_spearman
2025
+ value: 88.45889274229359
2026
+ - task:
2027
+ type: STS
2028
+ dataset:
2029
+ type: mteb/sts16-sts
2030
+ name: MTEB STS16
2031
+ config: default
2032
+ split: test
2033
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2034
+ metrics:
2035
+ - type: cos_sim_pearson
2036
+ value: 84.68359147631057
2037
+ - type: cos_sim_spearman
2038
+ value: 86.46426572535646
2039
+ - type: euclidean_pearson
2040
+ value: 85.98303971468599
2041
+ - type: euclidean_spearman
2042
+ value: 86.46426572535646
2043
+ - type: manhattan_pearson
2044
+ value: 85.95109710640726
2045
+ - type: manhattan_spearman
2046
+ value: 86.43282632541583
2047
+ - task:
2048
+ type: STS
2049
+ dataset:
2050
+ type: mteb/sts17-crosslingual-sts
2051
+ name: MTEB STS17 (en-en)
2052
+ config: en-en
2053
+ split: test
2054
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2055
+ metrics:
2056
+ - type: cos_sim_pearson
2057
+ value: 88.88758959688604
2058
+ - type: cos_sim_spearman
2059
+ value: 88.70384784133324
2060
+ - type: euclidean_pearson
2061
+ value: 89.27293800474978
2062
+ - type: euclidean_spearman
2063
+ value: 88.70384784133324
2064
+ - type: manhattan_pearson
2065
+ value: 89.41494348093664
2066
+ - type: manhattan_spearman
2067
+ value: 88.8330050824941
2068
+ - task:
2069
+ type: STS
2070
+ dataset:
2071
+ type: mteb/sts22-crosslingual-sts
2072
+ name: MTEB STS22 (en)
2073
+ config: en
2074
+ split: test
2075
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2076
+ metrics:
2077
+ - type: cos_sim_pearson
2078
+ value: 67.66759812551814
2079
+ - type: cos_sim_spearman
2080
+ value: 68.02368115471576
2081
+ - type: euclidean_pearson
2082
+ value: 69.52859542757353
2083
+ - type: euclidean_spearman
2084
+ value: 68.02368115471576
2085
+ - type: manhattan_pearson
2086
+ value: 69.50332399468952
2087
+ - type: manhattan_spearman
2088
+ value: 67.91228681203849
2089
+ - task:
2090
+ type: STS
2091
+ dataset:
2092
+ type: mteb/stsbenchmark-sts
2093
+ name: MTEB STSBenchmark
2094
+ config: default
2095
+ split: test
2096
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2097
+ metrics:
2098
+ - type: cos_sim_pearson
2099
+ value: 87.75891320010409
2100
+ - type: cos_sim_spearman
2101
+ value: 88.33063922402347
2102
+ - type: euclidean_pearson
2103
+ value: 88.02964654543274
2104
+ - type: euclidean_spearman
2105
+ value: 88.33063922402347
2106
+ - type: manhattan_pearson
2107
+ value: 88.03029440701458
2108
+ - type: manhattan_spearman
2109
+ value: 88.3158691488696
2110
+ - task:
2111
+ type: Reranking
2112
+ dataset:
2113
+ type: mteb/scidocs-reranking
2114
+ name: MTEB SciDocsRR
2115
+ config: default
2116
+ split: test
2117
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2118
+ metrics:
2119
+ - type: map
2120
+ value: 87.46897310470844
2121
+ - type: mrr
2122
+ value: 96.29042072669523
2123
+ - task:
2124
+ type: Retrieval
2125
+ dataset:
2126
+ type: scifact
2127
+ name: MTEB SciFact
2128
+ config: default
2129
+ split: test
2130
+ revision: None
2131
+ metrics:
2132
+ - type: map_at_1
2133
+ value: 62.261
2134
+ - type: map_at_10
2135
+ value: 71.023
2136
+ - type: map_at_100
2137
+ value: 71.5
2138
+ - type: map_at_1000
2139
+ value: 71.518
2140
+ - type: map_at_3
2141
+ value: 67.857
2142
+ - type: map_at_5
2143
+ value: 69.44500000000001
2144
+ - type: mrr_at_1
2145
+ value: 65.0
2146
+ - type: mrr_at_10
2147
+ value: 72.11
2148
+ - type: mrr_at_100
2149
+ value: 72.479
2150
+ - type: mrr_at_1000
2151
+ value: 72.49600000000001
2152
+ - type: mrr_at_3
2153
+ value: 69.722
2154
+ - type: mrr_at_5
2155
+ value: 71.02199999999999
2156
+ - type: ndcg_at_1
2157
+ value: 65.0
2158
+ - type: ndcg_at_10
2159
+ value: 75.40599999999999
2160
+ - type: ndcg_at_100
2161
+ value: 77.41
2162
+ - type: ndcg_at_1000
2163
+ value: 77.83200000000001
2164
+ - type: ndcg_at_3
2165
+ value: 69.95599999999999
2166
+ - type: ndcg_at_5
2167
+ value: 72.296
2168
+ - type: precision_at_1
2169
+ value: 65.0
2170
+ - type: precision_at_10
2171
+ value: 9.966999999999999
2172
+ - type: precision_at_100
2173
+ value: 1.097
2174
+ - type: precision_at_1000
2175
+ value: 0.11299999999999999
2176
+ - type: precision_at_3
2177
+ value: 26.667
2178
+ - type: precision_at_5
2179
+ value: 17.666999999999998
2180
+ - type: recall_at_1
2181
+ value: 62.261
2182
+ - type: recall_at_10
2183
+ value: 87.822
2184
+ - type: recall_at_100
2185
+ value: 96.833
2186
+ - type: recall_at_1000
2187
+ value: 100.0
2188
+ - type: recall_at_3
2189
+ value: 73.06099999999999
2190
+ - type: recall_at_5
2191
+ value: 78.88300000000001
2192
+ - task:
2193
+ type: PairClassification
2194
+ dataset:
2195
+ type: mteb/sprintduplicatequestions-pairclassification
2196
+ name: MTEB SprintDuplicateQuestions
2197
+ config: default
2198
+ split: test
2199
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2200
+ metrics:
2201
+ - type: cos_sim_accuracy
2202
+ value: 99.86138613861387
2203
+ - type: cos_sim_ap
2204
+ value: 96.7851799601876
2205
+ - type: cos_sim_f1
2206
+ value: 92.94354838709677
2207
+ - type: cos_sim_precision
2208
+ value: 93.69918699186992
2209
+ - type: cos_sim_recall
2210
+ value: 92.2
2211
+ - type: dot_accuracy
2212
+ value: 99.86138613861387
2213
+ - type: dot_ap
2214
+ value: 96.78517996018759
2215
+ - type: dot_f1
2216
+ value: 92.94354838709677
2217
+ - type: dot_precision
2218
+ value: 93.69918699186992
2219
+ - type: dot_recall
2220
+ value: 92.2
2221
+ - type: euclidean_accuracy
2222
+ value: 99.86138613861387
2223
+ - type: euclidean_ap
2224
+ value: 96.78517996018759
2225
+ - type: euclidean_f1
2226
+ value: 92.94354838709677
2227
+ - type: euclidean_precision
2228
+ value: 93.69918699186992
2229
+ - type: euclidean_recall
2230
+ value: 92.2
2231
+ - type: manhattan_accuracy
2232
+ value: 99.86336633663366
2233
+ - type: manhattan_ap
2234
+ value: 96.79790073128503
2235
+ - type: manhattan_f1
2236
+ value: 93.0930930930931
2237
+ - type: manhattan_precision
2238
+ value: 93.18637274549098
2239
+ - type: manhattan_recall
2240
+ value: 93.0
2241
+ - type: max_accuracy
2242
+ value: 99.86336633663366
2243
+ - type: max_ap
2244
+ value: 96.79790073128503
2245
+ - type: max_f1
2246
+ value: 93.0930930930931
2247
+ - task:
2248
+ type: Clustering
2249
+ dataset:
2250
+ type: mteb/stackexchange-clustering
2251
+ name: MTEB StackExchangeClustering
2252
+ config: default
2253
+ split: test
2254
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2255
+ metrics:
2256
+ - type: v_measure
2257
+ value: 65.07696952556874
2258
+ - task:
2259
+ type: Clustering
2260
+ dataset:
2261
+ type: mteb/stackexchange-clustering-p2p
2262
+ name: MTEB StackExchangeClusteringP2P
2263
+ config: default
2264
+ split: test
2265
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2266
+ metrics:
2267
+ - type: v_measure
2268
+ value: 35.51701116515262
2269
+ - task:
2270
+ type: Reranking
2271
+ dataset:
2272
+ type: mteb/stackoverflowdupquestions-reranking
2273
+ name: MTEB StackOverflowDupQuestions
2274
+ config: default
2275
+ split: test
2276
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2277
+ metrics:
2278
+ - type: map
2279
+ value: 55.40099299306496
2280
+ - type: mrr
2281
+ value: 56.411316420507596
2282
+ - task:
2283
+ type: Summarization
2284
+ dataset:
2285
+ type: mteb/summeval
2286
+ name: MTEB SummEval
2287
+ config: default
2288
+ split: test
2289
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2290
+ metrics:
2291
+ - type: cos_sim_pearson
2292
+ value: 30.940008734510055
2293
+ - type: cos_sim_spearman
2294
+ value: 31.606997026865212
2295
+ - type: dot_pearson
2296
+ value: 30.940010256206353
2297
+ - type: dot_spearman
2298
+ value: 31.62194110302714
2299
+ - task:
2300
+ type: Retrieval
2301
+ dataset:
2302
+ type: trec-covid
2303
+ name: MTEB TRECCOVID
2304
+ config: default
2305
+ split: test
2306
+ revision: None
2307
+ metrics:
2308
+ - type: map_at_1
2309
+ value: 0.197
2310
+ - type: map_at_10
2311
+ value: 1.6549999999999998
2312
+ - type: map_at_100
2313
+ value: 8.939
2314
+ - type: map_at_1000
2315
+ value: 22.402
2316
+ - type: map_at_3
2317
+ value: 0.587
2318
+ - type: map_at_5
2319
+ value: 0.931
2320
+ - type: mrr_at_1
2321
+ value: 74.0
2322
+ - type: mrr_at_10
2323
+ value: 84.667
2324
+ - type: mrr_at_100
2325
+ value: 84.667
2326
+ - type: mrr_at_1000
2327
+ value: 84.667
2328
+ - type: mrr_at_3
2329
+ value: 83.667
2330
+ - type: mrr_at_5
2331
+ value: 84.667
2332
+ - type: ndcg_at_1
2333
+ value: 69.0
2334
+ - type: ndcg_at_10
2335
+ value: 66.574
2336
+ - type: ndcg_at_100
2337
+ value: 51.074
2338
+ - type: ndcg_at_1000
2339
+ value: 47.263
2340
+ - type: ndcg_at_3
2341
+ value: 71.95
2342
+ - type: ndcg_at_5
2343
+ value: 70.52000000000001
2344
+ - type: precision_at_1
2345
+ value: 74.0
2346
+ - type: precision_at_10
2347
+ value: 70.39999999999999
2348
+ - type: precision_at_100
2349
+ value: 52.580000000000005
2350
+ - type: precision_at_1000
2351
+ value: 20.93
2352
+ - type: precision_at_3
2353
+ value: 76.667
2354
+ - type: precision_at_5
2355
+ value: 75.6
2356
+ - type: recall_at_1
2357
+ value: 0.197
2358
+ - type: recall_at_10
2359
+ value: 1.92
2360
+ - type: recall_at_100
2361
+ value: 12.655
2362
+ - type: recall_at_1000
2363
+ value: 44.522
2364
+ - type: recall_at_3
2365
+ value: 0.639
2366
+ - type: recall_at_5
2367
+ value: 1.03
2368
+ - task:
2369
+ type: Retrieval
2370
+ dataset:
2371
+ type: webis-touche2020
2372
+ name: MTEB Touche2020
2373
+ config: default
2374
+ split: test
2375
+ revision: None
2376
+ metrics:
2377
+ - type: map_at_1
2378
+ value: 1.735
2379
+ - type: map_at_10
2380
+ value: 9.064
2381
+ - type: map_at_100
2382
+ value: 15.021999999999998
2383
+ - type: map_at_1000
2384
+ value: 16.596
2385
+ - type: map_at_3
2386
+ value: 4.188
2387
+ - type: map_at_5
2388
+ value: 6.194999999999999
2389
+ - type: mrr_at_1
2390
+ value: 26.531
2391
+ - type: mrr_at_10
2392
+ value: 44.413000000000004
2393
+ - type: mrr_at_100
2394
+ value: 45.433
2395
+ - type: mrr_at_1000
2396
+ value: 45.452999999999996
2397
+ - type: mrr_at_3
2398
+ value: 41.497
2399
+ - type: mrr_at_5
2400
+ value: 42.925000000000004
2401
+ - type: ndcg_at_1
2402
+ value: 22.448999999999998
2403
+ - type: ndcg_at_10
2404
+ value: 22.597
2405
+ - type: ndcg_at_100
2406
+ value: 34.893
2407
+ - type: ndcg_at_1000
2408
+ value: 46.763
2409
+ - type: ndcg_at_3
2410
+ value: 24.366
2411
+ - type: ndcg_at_5
2412
+ value: 23.959
2413
+ - type: precision_at_1
2414
+ value: 26.531
2415
+ - type: precision_at_10
2416
+ value: 21.02
2417
+ - type: precision_at_100
2418
+ value: 7.51
2419
+ - type: precision_at_1000
2420
+ value: 1.541
2421
+ - type: precision_at_3
2422
+ value: 27.211000000000002
2423
+ - type: precision_at_5
2424
+ value: 25.306
2425
+ - type: recall_at_1
2426
+ value: 1.735
2427
+ - type: recall_at_10
2428
+ value: 15.870999999999999
2429
+ - type: recall_at_100
2430
+ value: 47.385
2431
+ - type: recall_at_1000
2432
+ value: 83.55
2433
+ - type: recall_at_3
2434
+ value: 5.813
2435
+ - type: recall_at_5
2436
+ value: 9.707
2437
+ - task:
2438
+ type: Classification
2439
+ dataset:
2440
+ type: mteb/toxic_conversations_50k
2441
+ name: MTEB ToxicConversationsClassification
2442
+ config: default
2443
+ split: test
2444
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2445
+ metrics:
2446
+ - type: accuracy
2447
+ value: 71.19
2448
+ - type: ap
2449
+ value: 15.106812062408629
2450
+ - type: f1
2451
+ value: 55.254852511954255
2452
+ - task:
2453
+ type: Classification
2454
+ dataset:
2455
+ type: mteb/tweet_sentiment_extraction
2456
+ name: MTEB TweetSentimentExtractionClassification
2457
+ config: default
2458
+ split: test
2459
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2460
+ metrics:
2461
+ - type: accuracy
2462
+ value: 61.553480475382
2463
+ - type: f1
2464
+ value: 61.697424438626435
2465
+ - task:
2466
+ type: Clustering
2467
+ dataset:
2468
+ type: mteb/twentynewsgroups-clustering
2469
+ name: MTEB TwentyNewsgroupsClustering
2470
+ config: default
2471
+ split: test
2472
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2473
+ metrics:
2474
+ - type: v_measure
2475
+ value: 53.12092298453447
2476
+ - task:
2477
+ type: PairClassification
2478
+ dataset:
2479
+ type: mteb/twittersemeval2015-pairclassification
2480
+ name: MTEB TwitterSemEval2015
2481
+ config: default
2482
+ split: test
2483
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2484
+ metrics:
2485
+ - type: cos_sim_accuracy
2486
+ value: 87.35173153722357
2487
+ - type: cos_sim_ap
2488
+ value: 78.22985044080261
2489
+ - type: cos_sim_f1
2490
+ value: 71.23356926188069
2491
+ - type: cos_sim_precision
2492
+ value: 68.36487142163999
2493
+ - type: cos_sim_recall
2494
+ value: 74.35356200527704
2495
+ - type: dot_accuracy
2496
+ value: 87.35173153722357
2497
+ - type: dot_ap
2498
+ value: 78.22985958574529
2499
+ - type: dot_f1
2500
+ value: 71.23356926188069
2501
+ - type: dot_precision
2502
+ value: 68.36487142163999
2503
+ - type: dot_recall
2504
+ value: 74.35356200527704
2505
+ - type: euclidean_accuracy
2506
+ value: 87.35173153722357
2507
+ - type: euclidean_ap
2508
+ value: 78.22985909816191
2509
+ - type: euclidean_f1
2510
+ value: 71.23356926188069
2511
+ - type: euclidean_precision
2512
+ value: 68.36487142163999
2513
+ - type: euclidean_recall
2514
+ value: 74.35356200527704
2515
+ - type: manhattan_accuracy
2516
+ value: 87.36365261965786
2517
+ - type: manhattan_ap
2518
+ value: 78.18108280854142
2519
+ - type: manhattan_f1
2520
+ value: 71.19958634953466
2521
+ - type: manhattan_precision
2522
+ value: 69.79219462747086
2523
+ - type: manhattan_recall
2524
+ value: 72.66490765171504
2525
+ - type: max_accuracy
2526
+ value: 87.36365261965786
2527
+ - type: max_ap
2528
+ value: 78.22985958574529
2529
+ - type: max_f1
2530
+ value: 71.23356926188069
2531
+ - task:
2532
+ type: PairClassification
2533
+ dataset:
2534
+ type: mteb/twitterurlcorpus-pairclassification
2535
+ name: MTEB TwitterURLCorpus
2536
+ config: default
2537
+ split: test
2538
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2539
+ metrics:
2540
+ - type: cos_sim_accuracy
2541
+ value: 88.71424690495596
2542
+ - type: cos_sim_ap
2543
+ value: 85.53000600450122
2544
+ - type: cos_sim_f1
2545
+ value: 77.95508274231679
2546
+ - type: cos_sim_precision
2547
+ value: 74.92189718829879
2548
+ - type: cos_sim_recall
2549
+ value: 81.24422543886665
2550
+ - type: dot_accuracy
2551
+ value: 88.71424690495596
2552
+ - type: dot_ap
2553
+ value: 85.53000387261983
2554
+ - type: dot_f1
2555
+ value: 77.95508274231679
2556
+ - type: dot_precision
2557
+ value: 74.92189718829879
2558
+ - type: dot_recall
2559
+ value: 81.24422543886665
2560
+ - type: euclidean_accuracy
2561
+ value: 88.71424690495596
2562
+ - type: euclidean_ap
2563
+ value: 85.53000527321076
2564
+ - type: euclidean_f1
2565
+ value: 77.95508274231679
2566
+ - type: euclidean_precision
2567
+ value: 74.92189718829879
2568
+ - type: euclidean_recall
2569
+ value: 81.24422543886665
2570
+ - type: manhattan_accuracy
2571
+ value: 88.7297706368611
2572
+ - type: manhattan_ap
2573
+ value: 85.49670114967172
2574
+ - type: manhattan_f1
2575
+ value: 77.91265729089562
2576
+ - type: manhattan_precision
2577
+ value: 75.01425313568986
2578
+ - type: manhattan_recall
2579
+ value: 81.04404065291038
2580
+ - type: max_accuracy
2581
+ value: 88.7297706368611
2582
+ - type: max_ap
2583
+ value: 85.53000600450122
2584
+ - type: max_f1
2585
+ value: 77.95508274231679
2586
  ---
2587
 
2588
  # {MODEL_NAME}