Upload interpolator_sfno_paper_v0_hydra_config.yaml
Browse files
interpolator_sfno_paper_v0_hydra_config.yaml
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
work_dir: ./results
|
2 |
+
ckpt_dir: ./results/checkpoints/
|
3 |
+
log_dir: ./results/logs/
|
4 |
+
print_config: true
|
5 |
+
ignore_warnings: true
|
6 |
+
test_after_training: false
|
7 |
+
save_config_to_wandb: true
|
8 |
+
verbose: true
|
9 |
+
seed: 11
|
10 |
+
torch_matmul_precision: high
|
11 |
+
name: FV3GFS-Ipol6h
|
12 |
+
name_suffix: null
|
13 |
+
suffix: null
|
14 |
+
trainer:
|
15 |
+
profiler: {}
|
16 |
+
_target_: pytorch_lightning.Trainer
|
17 |
+
accelerator: gpu
|
18 |
+
devices: 4
|
19 |
+
strategy: ddp_find_unused_parameters_false
|
20 |
+
min_epochs: 1
|
21 |
+
max_epochs: 60
|
22 |
+
gradient_clip_val: 0.5
|
23 |
+
accumulate_grad_batches: 3
|
24 |
+
precision: 16
|
25 |
+
num_sanity_val_steps: 1
|
26 |
+
val_check_interval: 1.0
|
27 |
+
deterministic: true
|
28 |
+
log_every_n_steps: 50
|
29 |
+
model:
|
30 |
+
_target_: src.models.sfno.sfnonet.SphericalFourierNeuralOperatorNet
|
31 |
+
embed_dim: 256
|
32 |
+
spectral_transform: sht
|
33 |
+
filter_type: linear
|
34 |
+
operator_type: dhconv
|
35 |
+
num_layers: 8
|
36 |
+
use_mlp: true
|
37 |
+
mlp_ratio: 2.0
|
38 |
+
scale_factor: 1
|
39 |
+
separable: false
|
40 |
+
spectral_layers: 3
|
41 |
+
activation_function: gelu
|
42 |
+
pos_embed: true
|
43 |
+
dropout_filter: 0
|
44 |
+
dropout_mlp: 0.1
|
45 |
+
pos_emb_dropout: 0.0
|
46 |
+
drop_path_rate: 0.1
|
47 |
+
num_blocks: 8
|
48 |
+
sparsity_threshold: 0.0
|
49 |
+
normalization_layer: instance_norm
|
50 |
+
hard_thresholding_fraction: 1.0
|
51 |
+
checkpointing: 0
|
52 |
+
time_scale_shift_before_filter: true
|
53 |
+
loss_function:
|
54 |
+
_target_: src.losses.losses.LpLoss
|
55 |
+
p: 2
|
56 |
+
relative: true
|
57 |
+
name: SFNO
|
58 |
+
verbose: true
|
59 |
+
num_conditional_channels: 0
|
60 |
+
with_time_emb: true
|
61 |
+
datamodule:
|
62 |
+
data_dir: /data
|
63 |
+
batch_size: 6
|
64 |
+
eval_batch_size: 2
|
65 |
+
num_workers: 8
|
66 |
+
pin_memory: false
|
67 |
+
persistent_workers: true
|
68 |
+
drop_last: false
|
69 |
+
shuffle_train_data: true
|
70 |
+
verbose: true
|
71 |
+
window: 1
|
72 |
+
horizon: 6
|
73 |
+
max_train_samples: null
|
74 |
+
max_val_samples: 80
|
75 |
+
forcing_names:
|
76 |
+
- DSWRFtoa
|
77 |
+
in_names:
|
78 |
+
- HGTsfc
|
79 |
+
- PRESsfc
|
80 |
+
- surface_temperature
|
81 |
+
- air_temperature_0
|
82 |
+
- air_temperature_1
|
83 |
+
- air_temperature_2
|
84 |
+
- air_temperature_3
|
85 |
+
- air_temperature_4
|
86 |
+
- air_temperature_5
|
87 |
+
- air_temperature_6
|
88 |
+
- air_temperature_7
|
89 |
+
- specific_total_water_0
|
90 |
+
- specific_total_water_1
|
91 |
+
- specific_total_water_2
|
92 |
+
- specific_total_water_3
|
93 |
+
- specific_total_water_4
|
94 |
+
- specific_total_water_5
|
95 |
+
- specific_total_water_6
|
96 |
+
- specific_total_water_7
|
97 |
+
- eastward_wind_0
|
98 |
+
- eastward_wind_1
|
99 |
+
- eastward_wind_2
|
100 |
+
- eastward_wind_3
|
101 |
+
- eastward_wind_4
|
102 |
+
- eastward_wind_5
|
103 |
+
- eastward_wind_6
|
104 |
+
- eastward_wind_7
|
105 |
+
- northward_wind_0
|
106 |
+
- northward_wind_1
|
107 |
+
- northward_wind_2
|
108 |
+
- northward_wind_3
|
109 |
+
- northward_wind_4
|
110 |
+
- northward_wind_5
|
111 |
+
- northward_wind_6
|
112 |
+
- northward_wind_7
|
113 |
+
out_names:
|
114 |
+
- PRESsfc
|
115 |
+
- surface_temperature
|
116 |
+
- air_temperature_0
|
117 |
+
- air_temperature_1
|
118 |
+
- air_temperature_2
|
119 |
+
- air_temperature_3
|
120 |
+
- air_temperature_4
|
121 |
+
- air_temperature_5
|
122 |
+
- air_temperature_6
|
123 |
+
- air_temperature_7
|
124 |
+
- specific_total_water_0
|
125 |
+
- specific_total_water_1
|
126 |
+
- specific_total_water_2
|
127 |
+
- specific_total_water_3
|
128 |
+
- specific_total_water_4
|
129 |
+
- specific_total_water_5
|
130 |
+
- specific_total_water_6
|
131 |
+
- specific_total_water_7
|
132 |
+
- eastward_wind_0
|
133 |
+
- eastward_wind_1
|
134 |
+
- eastward_wind_2
|
135 |
+
- eastward_wind_3
|
136 |
+
- eastward_wind_4
|
137 |
+
- eastward_wind_5
|
138 |
+
- eastward_wind_6
|
139 |
+
- eastward_wind_7
|
140 |
+
- northward_wind_0
|
141 |
+
- northward_wind_1
|
142 |
+
- northward_wind_2
|
143 |
+
- northward_wind_3
|
144 |
+
- northward_wind_4
|
145 |
+
- northward_wind_5
|
146 |
+
- northward_wind_6
|
147 |
+
- northward_wind_7
|
148 |
+
auxiliary_names: null
|
149 |
+
prediction_horizon: null
|
150 |
+
_target_: src.datamodules.fv3gfs_ensemble.FV3GFSEnsembleDataModule
|
151 |
+
data_dir_stats: /data/stats
|
152 |
+
training_sub_paths: null
|
153 |
+
prescriber:
|
154 |
+
_target_: fme.core.prescriber.Prescriber
|
155 |
+
prescribed_name: surface_temperature
|
156 |
+
mask_name: ocean_fraction
|
157 |
+
mask_value: 1
|
158 |
+
module:
|
159 |
+
optimizer:
|
160 |
+
name: adamw
|
161 |
+
lr: 0.0004
|
162 |
+
weight_decay: 1.0e-05
|
163 |
+
eps: 1.0e-08
|
164 |
+
betas:
|
165 |
+
- 0.9
|
166 |
+
- 0.99
|
167 |
+
scheduler:
|
168 |
+
_target_: torch.optim.lr_scheduler.CosineAnnealingLR
|
169 |
+
T_max: 60
|
170 |
+
monitor: val/avg/crps
|
171 |
+
mode: min
|
172 |
+
name: ''
|
173 |
+
use_ema: true
|
174 |
+
ema_decay: 0.9999
|
175 |
+
enable_inference_dropout: true
|
176 |
+
num_predictions: 16
|
177 |
+
prediction_inputs_noise: 0.0
|
178 |
+
logging_infix: ''
|
179 |
+
log_every_step_up_to: 1000
|
180 |
+
verbose: true
|
181 |
+
seed: 11
|
182 |
+
work_dir: ./results
|
183 |
+
_target_: src.experiment_types.interpolation.InterpolationExperiment
|
184 |
+
stack_window_to_channel_dim: true
|
185 |
+
callbacks:
|
186 |
+
model_checkpoint:
|
187 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
188 |
+
monitor: val/avg/crps
|
189 |
+
mode: min
|
190 |
+
save_top_k: 1
|
191 |
+
save_last: true
|
192 |
+
verbose: true
|
193 |
+
dirpath: ./results/checkpoints/01HER6GMAMHXPA62240XSV4TD4
|
194 |
+
filename: FV3GFS-Ipol6h_None_epoch{epoch:03d}_seed11
|
195 |
+
auto_insert_metric_name: false
|
196 |
+
watch_model:
|
197 |
+
_target_: src.utilities.wandb_callbacks.WatchModel
|
198 |
+
log: all
|
199 |
+
log_freq: 500
|
200 |
+
summarize_best_val_metric:
|
201 |
+
_target_: src.utilities.wandb_callbacks.SummarizeBestValMetric
|
202 |
+
learning_rate_logging:
|
203 |
+
_target_: pytorch_lightning.callbacks.LearningRateMonitor
|
204 |
+
logger:
|
205 |
+
wandb:
|
206 |
+
_target_: src.utilities.wandb_callbacks.MyWandbLogger
|
207 |
+
entity: ai2cm
|
208 |
+
name: FV3GFS-Ipol6h_SFNO_EMA_256x8h_L2R_44lr_10mlpDr_10dpr_15wd_cos_11seed
|
209 |
+
tags:
|
210 |
+
- fv3gfs
|
211 |
+
- interpolation
|
212 |
+
notes: '...'
|
213 |
+
project: FME-v2-salva
|
214 |
+
group: FV3GFS-Ipol6h_SFNO_EMA_256x8h_L2R_44lr_10mlpDr_10dpr_15wd_cos
|
215 |
+
resume: allow
|
216 |
+
reinit: true
|
217 |
+
mode: online
|
218 |
+
save_dir: ./results/
|
219 |
+
offline: false
|
220 |
+
id: 01HER6GMAMHXPA62240XSV4TD4
|
221 |
+
log_model: false
|
222 |
+
prefix: ''
|
223 |
+
n_gpus: 4
|
224 |
+
effective_batch_size: 72
|