File size: 2,012 Bytes
39f59f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-asap_t3_f2_prompt_adherence
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-small-asap_t3_f2_prompt_adherence

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0625
- Rouge1: 82.0051
- Rouge2: 77.1041
- Rougel: 81.9898
- Rougelsum: 81.9754
- Gen Len: 12.0580

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 259  | 0.0796          | 79.5698 | 74.2362 | 79.5637 | 79.5651   | 12.0333 |
| 0.4061        | 2.0   | 518  | 0.0661          | 81.7224 | 76.8264 | 81.7266 | 81.7555   | 12.0493 |
| 0.4061        | 3.0   | 777  | 0.0606          | 81.5783 | 76.5064 | 81.5455 | 81.5755   | 12.0580 |
| 0.0715        | 4.0   | 1036 | 0.0634          | 81.9213 | 77.0935 | 81.9101 | 81.9339   | 12.0551 |
| 0.0715        | 5.0   | 1295 | 0.0625          | 82.0051 | 77.1041 | 81.9898 | 81.9754   | 12.0580 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2