--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task4_fold4 results: [] --- # arabert_cross_vocabulary_task4_fold4 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6439 - Qwk: 0.8180 - Mse: 0.6439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0290 | 2 | 3.9935 | 0.0078 | 3.9935 | | No log | 0.0580 | 4 | 2.2937 | 0.0536 | 2.2937 | | No log | 0.0870 | 6 | 1.2377 | 0.1729 | 1.2377 | | No log | 0.1159 | 8 | 1.3353 | 0.1826 | 1.3353 | | No log | 0.1449 | 10 | 1.1216 | 0.4773 | 1.1216 | | No log | 0.1739 | 12 | 0.8392 | 0.5499 | 0.8392 | | No log | 0.2029 | 14 | 0.6966 | 0.6127 | 0.6966 | | No log | 0.2319 | 16 | 0.6473 | 0.6969 | 0.6473 | | No log | 0.2609 | 18 | 0.6961 | 0.7720 | 0.6961 | | No log | 0.2899 | 20 | 0.5180 | 0.8112 | 0.5180 | | No log | 0.3188 | 22 | 0.4069 | 0.7973 | 0.4069 | | No log | 0.3478 | 24 | 0.3749 | 0.7620 | 0.3749 | | No log | 0.3768 | 26 | 0.3945 | 0.7235 | 0.3945 | | No log | 0.4058 | 28 | 0.3796 | 0.7580 | 0.3796 | | No log | 0.4348 | 30 | 0.4995 | 0.8231 | 0.4995 | | No log | 0.4638 | 32 | 0.6489 | 0.7303 | 0.6489 | | No log | 0.4928 | 34 | 0.6807 | 0.6611 | 0.6807 | | No log | 0.5217 | 36 | 0.5950 | 0.7894 | 0.5950 | | No log | 0.5507 | 38 | 0.4549 | 0.8319 | 0.4549 | | No log | 0.5797 | 40 | 0.3601 | 0.7833 | 0.3601 | | No log | 0.6087 | 42 | 0.3472 | 0.7513 | 0.3472 | | No log | 0.6377 | 44 | 0.3541 | 0.716 | 0.3541 | | No log | 0.6667 | 46 | 0.3486 | 0.7411 | 0.3486 | | No log | 0.6957 | 48 | 0.3480 | 0.7678 | 0.3480 | | No log | 0.7246 | 50 | 0.3984 | 0.8135 | 0.3984 | | No log | 0.7536 | 52 | 0.5146 | 0.8349 | 0.5146 | | No log | 0.7826 | 54 | 0.6619 | 0.8250 | 0.6619 | | No log | 0.8116 | 56 | 0.7304 | 0.7951 | 0.7304 | | No log | 0.8406 | 58 | 0.7284 | 0.7985 | 0.7284 | | No log | 0.8696 | 60 | 0.7335 | 0.8019 | 0.7335 | | No log | 0.8986 | 62 | 0.7134 | 0.8053 | 0.7134 | | No log | 0.9275 | 64 | 0.6805 | 0.8133 | 0.6805 | | No log | 0.9565 | 66 | 0.6611 | 0.8180 | 0.6611 | | No log | 0.9855 | 68 | 0.6439 | 0.8180 | 0.6439 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1