--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task1_fold4 results: [] --- # arabert_cross_relevance_task1_fold4 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2814 - Qwk: 0.1577 - Mse: 0.2814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0328 | 2 | 0.5567 | -0.0320 | 0.5567 | | No log | 0.0656 | 4 | 0.5564 | -0.0102 | 0.5564 | | No log | 0.0984 | 6 | 0.5081 | 0.0304 | 0.5081 | | No log | 0.1311 | 8 | 0.4677 | 0.0304 | 0.4677 | | No log | 0.1639 | 10 | 0.4282 | 0.0400 | 0.4282 | | No log | 0.1967 | 12 | 0.4239 | 0.0496 | 0.4239 | | No log | 0.2295 | 14 | 0.4171 | 0.0384 | 0.4171 | | No log | 0.2623 | 16 | 0.3868 | 0.0496 | 0.3868 | | No log | 0.2951 | 18 | 0.3678 | 0.0690 | 0.3678 | | No log | 0.3279 | 20 | 0.3448 | 0.0596 | 0.3448 | | No log | 0.3607 | 22 | 0.3295 | 0.0877 | 0.3295 | | No log | 0.3934 | 24 | 0.3190 | 0.0877 | 0.3190 | | No log | 0.4262 | 26 | 0.3166 | 0.0969 | 0.3166 | | No log | 0.4590 | 28 | 0.3135 | 0.0969 | 0.3135 | | No log | 0.4918 | 30 | 0.3075 | 0.0969 | 0.3075 | | No log | 0.5246 | 32 | 0.3014 | 0.1139 | 0.3014 | | No log | 0.5574 | 34 | 0.2971 | 0.1139 | 0.2971 | | No log | 0.5902 | 36 | 0.2957 | 0.1048 | 0.2957 | | No log | 0.6230 | 38 | 0.2937 | 0.1048 | 0.2937 | | No log | 0.6557 | 40 | 0.2888 | 0.1139 | 0.2888 | | No log | 0.6885 | 42 | 0.2867 | 0.1139 | 0.2867 | | No log | 0.7213 | 44 | 0.2857 | 0.1139 | 0.2857 | | No log | 0.7541 | 46 | 0.2847 | 0.1321 | 0.2847 | | No log | 0.7869 | 48 | 0.2833 | 0.1577 | 0.2833 | | No log | 0.8197 | 50 | 0.2826 | 0.1577 | 0.2826 | | No log | 0.8525 | 52 | 0.2822 | 0.1577 | 0.2822 | | No log | 0.8852 | 54 | 0.2805 | 0.1577 | 0.2805 | | No log | 0.9180 | 56 | 0.2810 | 0.1667 | 0.2810 | | No log | 0.9508 | 58 | 0.2816 | 0.1667 | 0.2816 | | No log | 0.9836 | 60 | 0.2814 | 0.1577 | 0.2814 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1