--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_relevance_task1_fold1 results: [] --- # arabert_cross_relevance_task1_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3646 - Qwk: 0.0454 - Mse: 0.3647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0323 | 2 | 0.3884 | -0.0193 | 0.3901 | | No log | 0.0645 | 4 | 0.5676 | 0.0570 | 0.5677 | | No log | 0.0968 | 6 | 0.6160 | 0.1181 | 0.6161 | | No log | 0.1290 | 8 | 0.3914 | 0.0326 | 0.3913 | | No log | 0.1613 | 10 | 0.2970 | 0.0245 | 0.2972 | | No log | 0.1935 | 12 | 0.3016 | 0.0122 | 0.3018 | | No log | 0.2258 | 14 | 0.2905 | 0.0122 | 0.2908 | | No log | 0.2581 | 16 | 0.3013 | 0.0491 | 0.3016 | | No log | 0.2903 | 18 | 0.3427 | 0.0284 | 0.3429 | | No log | 0.3226 | 20 | 0.4170 | 0.0059 | 0.4170 | | No log | 0.3548 | 22 | 0.4971 | 0.0518 | 0.4971 | | No log | 0.3871 | 24 | 0.4934 | 0.0958 | 0.4933 | | No log | 0.4194 | 26 | 0.4203 | -0.0430 | 0.4203 | | No log | 0.4516 | 28 | 0.3668 | -0.0521 | 0.3669 | | No log | 0.4839 | 30 | 0.3462 | -0.0092 | 0.3463 | | No log | 0.5161 | 32 | 0.3500 | -0.0092 | 0.3500 | | No log | 0.5484 | 34 | 0.3623 | -0.0010 | 0.3623 | | No log | 0.5806 | 36 | 0.3911 | -0.0188 | 0.3911 | | No log | 0.6129 | 38 | 0.3635 | -0.0135 | 0.3634 | | No log | 0.6452 | 40 | 0.3500 | -0.0092 | 0.3500 | | No log | 0.6774 | 42 | 0.3369 | -0.0048 | 0.3369 | | No log | 0.7097 | 44 | 0.3357 | -0.0048 | 0.3358 | | No log | 0.7419 | 46 | 0.3574 | 0.0537 | 0.3574 | | No log | 0.7742 | 48 | 0.3901 | 0.0370 | 0.3901 | | No log | 0.8065 | 50 | 0.3986 | 0.0723 | 0.3985 | | No log | 0.8387 | 52 | 0.3875 | 0.0544 | 0.3875 | | No log | 0.8710 | 54 | 0.3792 | 0.0586 | 0.3792 | | No log | 0.9032 | 56 | 0.3727 | 0.0412 | 0.3727 | | No log | 0.9355 | 58 | 0.3667 | 0.0454 | 0.3667 | | No log | 0.9677 | 60 | 0.3648 | 0.0454 | 0.3648 | | No log | 1.0 | 62 | 0.3646 | 0.0454 | 0.3647 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1