--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: pickle model_file: skops-lsxie_ge.pkl widget: - structuredData: x0: - -0.7989508220667412 - -0.021264850777441783 - -0.3128970900109291 x1: - 0.4946075830589406 - -0.5773590622674106 - 0.14694272511525913 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |-------------------|---------| | C | 1.0 | | class_weight | | | dual | False | | fit_intercept | True | | intercept_scaling | 1 | | l1_ratio | | | max_iter | 100 | | multi_class | auto | | n_jobs | | | penalty | l2 | | random_state | | | solver | lbfgs | | tol | 0.0001 | | verbose | 0 | | warm_start | False |
### Model Plot
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results | Metric | Value | |-----------|----------| | accuracy | 0.925 | | precision | 0.944444 | | recall | 0.772727 | ### Confusion Matrix ![Confusion Matrix](confusion_matrix.png) ### Model description/Evaluation Results/Classification report
Click to expand | index | precision | recall | f1-score | support | |--------------|-------------|----------|------------|-----------| | No | 0.919355 | 0.982759 | 0.95 | 58 | | Yes | 0.944444 | 0.772727 | 0.85 | 22 | | macro avg | 0.9319 | 0.877743 | 0.9 | 80 | | weighted avg | 0.926254 | 0.925 | 0.9225 | 80 |
# How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # model_card_authors Seif # model_description This is a logistic regression classifer model traines on social network ads dataset # eval_method The model performance is evaluated on test data using accuracy, precision and recall score.