--- license: mit base_model: microsoft/llmlingua-2-xlm-roberta-large-meetingbank tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9570808283233133 - name: Recall type: recall value: 0.9644900706832716 - name: F1 type: f1 value: 0.9607711651299247 - name: Accuracy type: accuracy value: 0.9922812683901517 --- # bert-finetuned-ner This model is a fine-tuned version of [microsoft/llmlingua-2-xlm-roberta-large-meetingbank](https://huggingface.co./microsoft/llmlingua-2-xlm-roberta-large-meetingbank) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0434 - Precision: 0.9571 - Recall: 0.9645 - F1: 0.9608 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0716 | 1.0 | 1756 | 0.0592 | 0.9321 | 0.9468 | 0.9394 | 0.9885 | | 0.0344 | 2.0 | 3512 | 0.0518 | 0.9507 | 0.9581 | 0.9544 | 0.9908 | | 0.0213 | 3.0 | 5268 | 0.0434 | 0.9571 | 0.9645 | 0.9608 | 0.9923 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2