sahupra1357
commited on
Training complete
Browse files
README.md
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- precision
|
8 |
- recall
|
@@ -10,7 +12,29 @@ metrics:
|
|
10 |
- accuracy
|
11 |
model-index:
|
12 |
- name: bert-finetuned-ner
|
13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# bert-finetuned-ner
|
20 |
|
21 |
-
This model is a fine-tuned version of [
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -55,9 +79,9 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/llmlingua-2-xlm-roberta-large-meetingbank
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- conll2003
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
|
|
12 |
- accuracy
|
13 |
model-index:
|
14 |
- name: bert-finetuned-ner
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: conll2003
|
21 |
+
type: conll2003
|
22 |
+
config: conll2003
|
23 |
+
split: validation
|
24 |
+
args: conll2003
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.9570808283233133
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9644900706832716
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.9607711651299247
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9922812683901517
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# bert-finetuned-ner
|
44 |
|
45 |
+
This model is a fine-tuned version of [microsoft/llmlingua-2-xlm-roberta-large-meetingbank](https://huggingface.co/microsoft/llmlingua-2-xlm-roberta-large-meetingbank) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0434
|
48 |
+
- Precision: 0.9571
|
49 |
+
- Recall: 0.9645
|
50 |
+
- F1: 0.9608
|
51 |
+
- Accuracy: 0.9923
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0716 | 1.0 | 1756 | 0.0592 | 0.9321 | 0.9468 | 0.9394 | 0.9885 |
|
83 |
+
| 0.0344 | 2.0 | 3512 | 0.0518 | 0.9507 | 0.9581 | 0.9544 | 0.9908 |
|
84 |
+
| 0.0213 | 3.0 | 5268 | 0.0434 | 0.9571 | 0.9645 | 0.9608 | 0.9923 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235858356
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:634f5244b216fb044ffcb12f26bbf65fbfd650976971609aa241c3d7b1932384
|
3 |
size 2235858356
|
runs/Apr09_00-26-18_ca836123dfb8/events.out.tfevents.1712622379.ca836123dfb8.444.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f67d87cd2f7ddc8ea4942af4066c99c0081d378bb771bed0f0641085968350c
|
3 |
+
size 8899
|